Skip to main content
Log in

Effects of nanoscale quantum dots in male Chinese loaches (Misgurnus anguillicaudatus): Estrogenic interference action, toxicokinetics and oxidative stress

  • Published:
Science in China Series B: Chemistry Aims and scope Submit manuscript

Abstract

Quantum dots (QDs) have more and more attention as a novel example of nanocrystals due to their unique fluorescent characteristics. Recently, the toxicity and the potential environmental effects of QDs have become a research hotspot. In this work, in vivo endocrine disrupting effect, toxicokinetics and oxidative stress of QDs were characterized following the intraperitoneal dosing in Chinese loaches. Vitellogenin (Vtg) levels induced by E2 decreased significantly when administrated with the mixture of QDs and E2, which was consistent with the observations of histopathology in testes. The release of free Cd2+ from QDs and the non-specific adsorption of E2 by QDs might be the joint factors contributing to the inhibition of Vtg expression induced by E2 in the male Chinese loaches. In the muscle, bone, intestines, blood and testis, CdSe QDs reached the maximal concentration (C max) in approximately 1-h postinjection and subsequently presented downtrend with the prolonged time. Whereas, there were even increasing tendencies of CdSe QDs’ concentrations in the liver and kidney. It is educible that CdSe QDs can be persistent at least for 7 days, indicating the overall half-life of CdSe QDs in the fish body is very long. The measurement of hepatic superoxide dismutase (SOD) activity and reduced glutathione (GSH) content indicate that QDs have smaller effects on the antioxidative system of the organisms compared with free Cd2+ due to the effective prevention of the release of Cd by PEG coating of QDs. The comprehensive evaluation of QDs’ toxicity in the present study provides an essential and general framework towards more focused research on the elucidation of the biological effects of QDs in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colvin V L. The potential environmental impact of engineered nanomaterials. Nat Biotechnol, 2003, 21(10): 1166–1170

    Article  CAS  Google Scholar 

  2. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science, 2006, 311(5761): 622–627

    Article  CAS  Google Scholar 

  3. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science, 2003, 302(5644): 442–445

    Article  CAS  Google Scholar 

  4. Jaiswal J K, Mattoussi H, Mauro J M, Simon S M. Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol, 2003, 21(1): 47–51

    Article  CAS  Google Scholar 

  5. Dubertret B, Skourides P, Norris D J, Noireaux V, Brivanlou A H, Libchaber A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science, 2002, 298(5599): 1759–1762

    Article  CAS  Google Scholar 

  6. Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environ Health Perspect, 2006, 114(2): 165–172

    Google Scholar 

  7. Shiohara A, Hoshino A, Hanaki K, Suzuki K, Yamamoto K. On the cyto-toxicity caused by quantum dots. Microbiol Immunol, 2004, 48(9): 669–675

    CAS  Google Scholar 

  8. Zhang Y B, Chen W, Zhang J, Liu J, Chen G P, Pope C. In vitro and in vivo toxicity of CdTe nanoparticles. J Nanosci Nanotechnol, 2007, 7(2): 497–503

    Article  CAS  Google Scholar 

  9. Lovric J, Bazzi H S, Cuie Y, Fortin G R A, Winnik F M, Maysinger D. Differences in subcellular distribution and toxicity of green and red emitting CdTe quantum dots. J Mol Med, 2005, 83(5): 377–385

    Article  Google Scholar 

  10. Selvan S T, Tan T T, Ying J Y. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater, 2005, 17(3): 1620–1625

    Article  CAS  Google Scholar 

  11. Kirchner C, Liedl T, Kudera S, Pellegrino T, Javier A M, Gaub H E, Fertig N, Parak W J. Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles. Nano Lett, 2005, 5(2): 331–338

    Article  CAS  Google Scholar 

  12. Guo G N, Liu W, Liang J G, He Z K, Xu H B, Yang X L. Probing the cytotoxicity of CdSe quantum dots with surface modification. Material letters, 2007, 61(8–9): 1641–1644

    Article  CAS  Google Scholar 

  13. Hoshino A, Fujioka K, Oku T, Suga M, Sasaki Y F, Ohta T, Yasuhara M, Suzuki K, Yamamoto K. Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification. Nano Lett, 2004, 4(11): 2163–2169

    Article  CAS  Google Scholar 

  14. Derfus A M, Chan C W, Bhatia S N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett, 2004, 4(1): 11–18

    Article  CAS  Google Scholar 

  15. Tsay J M, Michalet X. New light on quantum dot cytotoxicity. Chem Biol, 2005, 12(11): 1159–1161

    Article  CAS  Google Scholar 

  16. Green M, Howman E. Semiconductor quantum dots and free radical induced DNA nicking. Chem Commun, 2005, (1): 121–123

  17. Ipe B I, Lehnig M, Niemeyer C M. On the generation of free radical species from quantum dots. Small, 2005, 1(7): 706–709

    Article  CAS  Google Scholar 

  18. Cho S J, Maysinger D, Jain M, Roder B, Hackbarth S, Winnik F M. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Langmuir, 2007, 23(4): 1974–1980

    Article  CAS  Google Scholar 

  19. Stoica A, Katzenellenbogen B S, Martin M B. Activation of estrogen receptor-alpha by the heavy metal cadmium. Mol Endocrinol, 2000, 14(4): 545–553

    Article  CAS  Google Scholar 

  20. Martin M B, Reiter R, Pham T, Avellanet Y R, Camara J, Lahm M, Pentecost E, Pratap K, Gilmore B A, Divekar S, Dagata R S, Bull J L, Stoica A. Estrogen-like activity of metals in MCF-7 breast cancer cells. Endocrinol, 2003, 144(6): 2425–2436

    Article  CAS  Google Scholar 

  21. Nesatyy V J, Ammann A A, Rutishauser B V, Suter M J F. Effect of cadmium on the interaction of 17 beta-estradiol with the rainbow trout estrogen receptor. Environ Sci Technol, 2006, 40(4): 1358–1363

    Article  CAS  Google Scholar 

  22. Olsson P E, Kling P, Petterson C, Silversand C. Interaction of cadmium and estradiol-17β on metallothionein and vitellogenin synthesis in rainbow trout (Oncorhynchus mykiss). Biochem J, 1995, 307(1): 197–203

    CAS  Google Scholar 

  23. Hwang U G, Kagawa N, Mugiya Y. Aluminium and cadmium inhibit vitellogenin and its mRNA induction by estradiol-17β in the primary culture of hepatocytes in the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol, 2000, 119(1): 69–76

    Article  CAS  Google Scholar 

  24. Thomas P. Effects of Aroclor 1254 and cadmium on reproductive endocrine function and ovarian growth in Atlantic croaker. Mar Environ Res, 1989, 28(1–4): 499–503

    Article  CAS  Google Scholar 

  25. Gaponik N, Talapin D V, Rogach A L, Hoppe K, Shevchenko E V, Kornowski A, Eychmüller A, Weller H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J Phys Chem B, 2002, 106(29): 7177–7185

    Article  CAS  Google Scholar 

  26. Bao H B, Gong Y J, Li Z, Gao M Y. Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: Toward highly fluorescent CdTe/CdS core-shell structure. Chem Mater, 2004, 16(20): 3853–3859

    Article  CAS  Google Scholar 

  27. Shao J, Shi G Q, Song M Y, Jiang G B. Development and validation of an enzyme-linked immunosorbent assay for vitellogenin in Chinese loach (Misgurnus angaillicaudatus). Environ Int, 2005, 31(5): 763–770

    Article  CAS  Google Scholar 

  28. Myung N, Bae Y, Bard A J. Enhancement of the photoluminescence of CdSe nanocrystals dispersed in CHCl3 by oxygen passivation of surface states. Nano Lett, 2003, 3(6): 747–749

    Article  CAS  Google Scholar 

  29. Yu K, Zaman B, Singh S, Wang D S, Ripmeester J A. The effect of dispersion media on photoluminescence of colloidal CdSe nanocrystals synthesized from TOP. Chem Mater, 2005, 17(10): 2552–2561

    Article  CAS  Google Scholar 

  30. Li C L, Murase N. Surfactant-dependent photoluminescence of CdTe nanocrystals in aqueous solution. Chem Lett, 2005, 34(1): 92–93

    Article  CAS  Google Scholar 

  31. Sun Y, Oberley L W, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem, 1988, 34(3): 497–500

    CAS  Google Scholar 

  32. Ellman G L. Tissue sulfhydryl groups. Arch Biochem Biophys, 1959, 82(1): 70–77

    Article  CAS  Google Scholar 

  33. Bradford M. Rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976, 72(1–2): 248–254

    Article  CAS  Google Scholar 

  34. Moncaut N, Nostro F L, Maggese M C. Vitellogenin detection in surface mucus of the South American cichlid fish Cichlasoma dimerus (Heckel, 1840) induced by estradiol-17β. Effects on liver and gonads. Aquat Toxicol, 2003, 63(2): 127–137

    Article  CAS  Google Scholar 

  35. Hashimoto S, Kurihara R, Strüssmann C A, Yamasaki T, Soyano K, Hara A, Shiraishi H, Morita M. Gonadal histology and serum vitellogenin levels of bigeye tuna Thunnus obesus from the Northern Pacific Ocean-absence of endocrine disruption bio-indicators. Mar Pollut Bull, 2003, 46(4): 459–465

    Article  CAS  Google Scholar 

  36. Ballou B, Lagerholm B C, Ernst L A, Bruchez M P, Waggoner A S. Noninvasive imaging of quantum dots in mice. Bioconjug Chem, 2004, 15(1): 79–86

    Article  CAS  Google Scholar 

  37. Fischer H C, Liu L C, Pang K S, Chan W C W. Pharmacokinetics of nanoscale quantum dots: In Vivo distribution, sequestration, and clearance in the Rat. Adv Funct Mater, 2007, 16(10): 1299–1305

    Article  CAS  Google Scholar 

  38. Yang R H, Chang L W, Wu J P, Tsai M H, Wang H J, Kuo Y C, Yeh T K, Yang C S, Lin P P. Persistent tissue kinetics and redistribution of nanoparticles, quantum dot 705, in mice: ICP-MS quantitative assessment. Environ Health Perspect, 2007, 115(9): 1339–1343

    Article  CAS  Google Scholar 

  39. Kappus H. Lipid peroxidation: Mechanisms, analysis, enzymology and biological relevance. In: Sies, H. (Ed.), Oxidative stress. London: Academic Press, 1985. 273–310

    Google Scholar 

  40. Stryer L. Biochemistry, 3rd ed. New York: Freeman W H, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuiBin Jiang.

Additional information

Supported by the State High Tech Development (Grant No. 2006AA06Z424), the National Natural Science Foundation of China (Grant No. 20537020), and Chinese Academy of Sciences (Grant No. KZCX2-YW-420-21)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Luo, W., Tao, Y. et al. Effects of nanoscale quantum dots in male Chinese loaches (Misgurnus anguillicaudatus): Estrogenic interference action, toxicokinetics and oxidative stress. Sci. China Ser. B-Chem. 52, 1683–1690 (2009). https://doi.org/10.1007/s11426-009-0226-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-009-0226-5

Keywords

Navigation