Skip to main content

Advertisement

Log in

Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery

  • Materials for life sciences
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Silica nanoparticles (SNPs) have attracted widespread attention as biocompatible and efficient nanocarriers for gene delivery. The physicochemical properties of SNPs such as particle size, pore size, nanotopography and surface chemistry play important roles in regulating the intracellular delivery performance of genetic molecules. SNPs engineered with a rambutan-like spiky surface (Ram-SNPs) have shown significantly enhanced transfection efficiency for plasmid DNA (pDNA). However, the impact of the particle size of Ram-SNPs on their pDNA delivery performance has not been reported. Here, we synthesized Ram-SNPs with tailored nanoparticles sizes of 180, 330 and 520 nm by controlling the polymerization of resorcinol–formaldehyde and silica in a surfactant-free synthesis system. The polyethylenimine modified Ram-SNPs were loaded with pDNA molecules for intracellular delivery. Smaller sized Ram-SNPs demonstrated slightly weaker binding with pDNA, enhanced cellular uptake and significantly higher transfection efficiency than the larger particles. This structure–function relationship is different from other SNPs used for pDNA delivery. The cellular uptake mechanism by Ram-SNPs was also investigated. These findings provide useful guidance for the rational design of silica-based non-viral vectors for efficient gene delivery applications.

Graphical abstract

A series of bioinspired rambutan-like silica nanoparticles with varied particle sizes were developed for plasmid DNA delivery, where smaller sized nanoparticles promoted the gene transfection efficiency due to enhanced cellular uptake capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359(6372):175

    Article  CAS  Google Scholar 

  2. Kim J, Mirando AC, Popel AS, Green JJ (2017) Gene delivery nanoparticles to modulate angiogenesis. Adv Drug Deliv Rev 119:20–43

    Article  CAS  Google Scholar 

  3. Keles E, Song Y, Du D, Dong WJ, Lin YH (2016) Recent progress in nanomaterials for gene delivery applications. Biomater Sci 4(9):1291–1309

    Article  CAS  Google Scholar 

  4. Chen J, Guo ZP, Tian HY, Chen XS (2016) Production and clinical development of nanoparticles for gene delivery. Mol Ther-Meth Clin Dev 3:16023

    Article  CAS  Google Scholar 

  5. Bessis N, GarciaCozar FJ, Boissier MC (2004) Immune responses to gene therapy vectors: influence on vector function and effector mechanisms. Gene Ther 11:S10–S17

    Article  CAS  Google Scholar 

  6. Shi BY, Zheng M, Tao W, Chung R, Jin DY, Ghaffari D, Farokhzad OC (2017) Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromol 18(8):2231–2246

    Article  CAS  Google Scholar 

  7. Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45(7):971–979

    Article  CAS  Google Scholar 

  8. Kang ZY, Meng QB, Liu KL (2019) Peptide-based gene delivery vectors. J Mater Chem B 7(11):1824–1841

    Article  CAS  Google Scholar 

  9. Sokolova V, Epple M (2008) Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 47(8):1382–1395

    Article  CAS  Google Scholar 

  10. Guo KL, Zhao XY, Dai XG, Zhao NN, Xu FJ (2019) Organic/inorganic nanohybrids as multifunctional gene delivery systems. J Gene Med 21(5):e3084

    Article  Google Scholar 

  11. Loh XJ, Lee TC, Dou Q, Deen GR (2015) Utilising inorganic nanocarriers for gene delivery. Biomater Sci 4:70–86

    Article  Google Scholar 

  12. Kumar S, Diwan A, Singh P, Gulati S, Choudhary D, Mongia A, Shukla S, Gupta A (2019) Functionalized gold nanostructures: promising gene delivery vehicles in cancer treatment. RSC Adv 9(41):23894–23907

    Article  CAS  Google Scholar 

  13. McBain SC, Yiu HHP, El Haj A, Dobson J (2007) Polyethyleneimine functionalized iron oxide nanoparticles as agents for DNA delivery and transfection. J Mater Chem 17(24):2561–2565

    Article  CAS  Google Scholar 

  14. Liu YJ, Zhao NN, Xu FJ (2019) pH-responsive degradable dextran-quantum dot nanohybrids for enhanced gene delivery. ACS Appl Mater Interfaces 11(38):34707–34716

    Article  CAS  Google Scholar 

  15. Niu YT, Popat A, Yu MH, Karmakar S, Gu WY, Yu CZ (2012) Recent advances in the rational design of silica-based nanoparticles for gene therapy. Ther Deliv 3(10):1217–1237

    Article  CAS  Google Scholar 

  16. Zhao NN, Lin XY, Zhang Q, Ji ZX, Xu FJ (2015) Redox-triggered gatekeeper-enveloped starlike hollow silica nanoparticles for intelligent delivery systems. Small 11(48):6467–6479

    Article  CAS  Google Scholar 

  17. Xiong L, Qiao SZ (2016) A mesoporous organosilica nano-bowl with high DNA loading capacity-a potential gene delivery carrier. Nanoscale 8(40):17446–17450

    Article  CAS  Google Scholar 

  18. Yu MH, Niu YT, Zhang J, Zhang HW, Yang YN, Taran E, Jambhrunkar S, Gu WY, Thorn P, Yu CZ (2016) Size-dependent gene delivery of amine-modified silica nanoparticles. Nano Res 9(2):291–305

    Article  CAS  Google Scholar 

  19. Cebrian V, Martin-Saavedra F, Yague C, Arruebo M, Santamaria J, Vilaboa N (2011) Size-dependent transfection efficiency of PEI-coated gold nanoparticles. Acta Biomater 7(10):3645–3655

    Article  CAS  Google Scholar 

  20. Yang HN, Park JS, Jeon SY, Park W, Na K, Park KH (2014) The effect of quantum dot size and poly(ethylenimine) coating on the efficiency of gene delivery into human mesenchymal stem cells. Biomaterials 35(29):8439–8449

    Article  CAS  Google Scholar 

  21. Lin X, Zhao N, Yan P, Hu H, Xu FJ (2015) The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomater 11:381–392

    Article  CAS  Google Scholar 

  22. Florek J, Caillard R, Kleitz F (2017) Evaluation of mesoporous silica nanoparticles for oral drug delivery-current status and perspective of MSNs drug carriers. Nanoscale 9(40):15252–15277

    Article  CAS  Google Scholar 

  23. Yu MH, Gu ZY, Ottewell T, Yu CZ (2017) Silica-based nanoparticles for therapeutic protein delivery. J Mater Chem B 5(18):3241–3252

    Article  CAS  Google Scholar 

  24. Hikosaka R, Nagata F, Tomita M, Kato K (2016) Adsorption and desorption characteristics of DNA onto the surface of amino functional mesoporous silica with various particle morphologies. Colloid Surf B 140:262–268

    Article  CAS  Google Scholar 

  25. Kim MH, Na HK, Kim YK, Ryoo SR, Cho HS, Lee KE, Jeon H, Ryoo R, Min DH (2011) Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano 5(5):3568–3576

    Article  CAS  Google Scholar 

  26. Hartono SB, Gu WY, Kleitz F, Liu J, He LZ, Middelberg APJ, Yu CZ, Lu GQ, Qiao SZ (2012) Poly-L-lysine functionalized large pore cubic mesostructured silica nanoparticles as biocompatible carriers for gene delivery. ACS Nano 6(3):2104–2117

    Article  CAS  Google Scholar 

  27. Song H, Yu MH, Lu Y, Gu ZY, Yang YN, Zhang M, Fu JY, Yu CZ (2017) Plasmid DNA delivery: nanotopography matters. J Am Chem Soc 139(50):18247–18254

    Article  CAS  Google Scholar 

  28. Chen XY, Zhang Q, Li JL, Yang M, Zhao NN, Xu FJ (2018) Rattle-structured rough nanocapsules with in-situ-formed reil gold nanorod cores for complementary gene/chemo/photothermal therapy. ACS Nano 12(6):5646–5656

    Article  CAS  Google Scholar 

  29. Zhang HJ, Xu HJ, Wu MH, Zhong YF, Wang DH, Jiao Z (2015) A soft-hard template approach towards hollow mesoporous silica nanoparticles with rough surfaces for controlled drug delivery and protein adsorption. J Mater Chem B 3(31):6480–6489

    Article  CAS  Google Scholar 

  30. Niu YT, Yu MH, Hartono SB, Yang J, Xu HY, Zhang HW, Zhang J, Zou J, Dexter A, Gu WY, Yu CZ (2013) Nanoparticles mimicking viral surface topography for enhanced cellular delivery. Adv Mater 25(43):6233–6237

    Article  CAS  Google Scholar 

  31. Song H, Yang YN, Tang J, Gu ZY, Wang Y, Zhang M, Yu CZ (2020) DNA vaccine mediated by rambutan-like mesoporous silica nanoparticles. Adv Ther 3(1):1900154

    Article  Google Scholar 

  32. Song H, Nor YA, Yu MH, Yang YN, Zhang J, Zhang HW, Xu C, Mitter N, Yu CZ (2016) Silica nanopollens enhance adhesion for long-term bacterial inhibition. J Am Chem Soc 138(20):6455–6462

    Article  CAS  Google Scholar 

  33. Kaasalainen M, Aseyev V, von Haartman E, Karaman DS, Makila E, Tenhu H, Rosenholm J, Salonen J (2017) Size, stability, and porosity of mesoporous nanoparticles characterized with light scattering. Nanoscale Res Lett 12:74

    Article  CAS  Google Scholar 

  34. Peach S (1998) Coagulative nucleation in surfactant-free emulsion polymerization. Macromolecules 31(10):3372–3373

    Article  CAS  Google Scholar 

  35. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao DY, Lu GQ (2011) Extension of the stober method to the preparation of monodisperse resorcinol-formaldehyde resin polymer and carbon spheres. Angew Chem Int Ed 50(26):5947–5951

    Article  CAS  Google Scholar 

  36. Aaij C, Borst P (1972) The gel electrophoresis of DNA. Biochim Biophys Acta (BBA )-Nucleic Acids Protein Synth 269(2):192–200

    Article  CAS  Google Scholar 

  37. Knežević NŽ, Ilić N, Ðokić V, Petrovic R, Janaćković Ð (2018) Mesoporous silica and organosilica nanomaterials as UV-blocking agents. ACS Appl Mater Interfaces 10(24):20231–20236

    Article  CAS  Google Scholar 

  38. Yan P, Wang R, Zhao N, Zhao H, Chen DF, Xu FJ (2015) Polycation-fuctionalized gold nanoparticles with different morphologies for superior gene transfection. Nanoscale 7:5281–5291

    Article  CAS  Google Scholar 

  39. Pang J, Su Y, Zhong Y, Peng F, Song B, He Y (2016) Fluorescent silicon nanoparticle-based gene carriers featuring strong photostability and feeble cytotoxicity. Nano Res 9(10):3027–3037

    Article  CAS  Google Scholar 

  40. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5(12):1408–1413

    Article  CAS  Google Scholar 

  41. Zhu J, Tang JW, Zhao LZ, Zhou XF, Wang YH, Yu CZ (2010) Ultrasmall, well-dispersed, hollow siliceous spheres with enhanced endocytosis properties. Small 6(2):276–282

    Article  CAS  Google Scholar 

  42. Zhao JC, Stenzel MH (2018) Entry of nanoparticles into cells: the importance of nanoparticle properties. Polym Chem 9(3):259–272

    Article  CAS  Google Scholar 

  43. Vivero-Escoto JL, Slowing II, Trewyn BG, Lin VSY (2010) Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small 6(18):1952–1967

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from the Australian Research Council, University of Queensland, Queensland node of the Australian National Fabrication Facility (ANFF-Q), Microscopy Australia Facility at the Centre for Microscopy and Microanalysis (CMM), the University of Queensland. We acknowledge N4 Pharma PLC for providing fund for this research.

Funding

The study was funded by University of Queensland Early Career Research Grant (UQECR1945393) and N4 Pharma PLC (AG-018869).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Song or Chengzhong Yu.

Ethics declarations

Conflicts of interest

Hao Song and Chengzhong Yu have received research grants from N4 Pharma PLC. Elizabeth Hines, Dan Cheng, Weixi Wu, Meihua Yu and Chun Xu declare no conflict of interest.

Additional information

Handling Editor: Yaroslava Yingling.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hines, E., Cheng, D., Wu, W. et al. Rambutan-like silica nanoparticles at tailored particle sizes for plasmid DNA delivery. J Mater Sci 56, 5830–5844 (2021). https://doi.org/10.1007/s10853-020-05660-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05660-w

Navigation