Skip to main content
Log in

Interaction between ultrashort laser pulses and gold nanoparticles: nanoheater and nanolens effect

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Theoretic and experimental results on the heating process and near field localization arising when gold nanoparticles are irradiated by ultrashort laser pulses are presented. The system under consideration consists of nanoparticles with radius of 20, 40, or 100 nm in vacuum or deposited on different substrates. Substrate materials with different dielectric properties are used to sense and visualize the nanoparticle heating and near electromagnetic field distribution. The theoretic analysis is based on two-temperature heat model for estimation of the nanoparticle temperature and Finite Difference Time Domain (FDTD) method for description of the near field distribution in the vicinity of the particles. It is found that at even moderate laser fluences, particle temperature can reach a value sufficient for bubble formation in biological tissues. The analysis of the near field distribution shows that when particle is deposited on substrate surface, the dielectric properties of the substrate define the localization and enhancement of the near field intensity. The efficiency of this process determines the contribution of particle heating or near field intensity enhancement in the surface modification process. The localization of the near field intensity in the vicinity of the contact point between the particle and substrate is proved experimentally for metal and silicon substrates, where the experimentally obtained surface modifications resemble the theoretically predicted intensity distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe K, Hanada T, Yoshida Y, Tanigaki N, Takiguchi H, Nakamoto M, Yamaguchi T, Yasea K (1998) Two-dimensional array of silver nanoparticles. Thin Solid Films 327–329:524–527

    Article  Google Scholar 

  • Anisimov SI, Kapeliovich BL, Perel’man TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Eksp Teor Fiz 66:776–781 (in Russian)

    Google Scholar 

  • Baker AK, Dyer PE (1993) Refractive-index modification of polymethylmethacrylate (PMMA) thin films by KrF-laser irradiation. Appl Phys A 57:543–544

    Article  Google Scholar 

  • Bashevoy MV, Fedotov VA, Zheludev NI (2005) Optical whirlpool on an absorbing metallic nanoparticle. Opt Express 1:8372–8379

    Article  Google Scholar 

  • Buscaglia MT, Buscaglia V, Viviani M, Dondero G, Röhrig S, Rüdiger A, Nanni P (2008) Ferroelectric hollow particles obtained by solid-state reaction. Nanotechnology 19:225602

    Article  Google Scholar 

  • Chen XY, Li JR, Jiang L (2000) Two-dimensional arrangement of octadecylamine-functionalized gold nanoparticles using the LB technique. Nanotechnology 11:108–111

    Article  CAS  Google Scholar 

  • Cho S, Chang W, Kim J, Whang K, Choi K, Sohn S (2008) In situ observation of photo-bleaching in human single living cell excited by a NIR femtosecond laser. Appl Surf Sci 254:3370–3375

    Article  CAS  Google Scholar 

  • Chowdhury IH, Numer X (2003) Heat transfer in femtosecond laser processing of metal. Heat Transf A 44:219–232

    Article  CAS  Google Scholar 

  • Chu T, Liu W-C, Tsai D (2005) Enhanced resolution induced by random silver nanoparticles in near-field optical disks. Opt Commun 246:561–567

    Article  CAS  Google Scholar 

  • Eversole D, Luk’yanchuk B, Ben-yakar A (2007) Plasmonic laser nanoablation of silicon by the scattering of femtosecond pulses near gold nanospheres. Appl Phys A 89:283–291

    Article  CAS  Google Scholar 

  • Habash RWY (2007) Bioeffects and therapeutic applications of electromagnetic energy. CRC Press, New York

    Book  Google Scholar 

  • Hodak JH, Martini I, Hartland GV (1998) Spectroscopy and dynamics of nanometer-sized noble metal particles. J Phys Chem B 102(36):6958–6967

    Article  CAS  Google Scholar 

  • Huang SM, Hong MH, Luk’yanchuk BS, Chong TC (2003) Direct and subdiffraction-limit laser nanofabrication in silicon. Appl Phys Lett 82:4809–4811

    Article  CAS  Google Scholar 

  • Jain PK, Huang X, El-Sayed I, El-Sayed M (2008) Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology and medicine. Acc Chem Res 41:1578–1586

    Article  CAS  Google Scholar 

  • Jerisch J, Dickmann K (1996) Nanostructure fabrication using laser field enhancement in the near field of a scanning tunneling microscope tip. Appl Phys Lett 68:868–870

    Article  Google Scholar 

  • Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  • Kelly K, Coronado E, Zhao L, Schatz G (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic Press, New York

    Google Scholar 

  • Khlebtsov B, Zharov Vl, Melnikov A, Tuchin V, Khlebtsov N (2006) Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters. Nanotechnology 17:5167–5179

    Article  CAS  Google Scholar 

  • Kik PG, Martin AL, Maier SA, Atwater HA (2002) Metal nanoparticle arrays for near-field optical lithography. Proc SPIE 4810:7–14

    Article  Google Scholar 

  • Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  • Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41:1842–1851

    Article  CAS  Google Scholar 

  • Leiderer P, Bartels C, König-Birk J, Mosbacher M, Boneberg J (2004) Imaging optical near-fields of nanostructures. Appl Phys Lett 85:5370–5372

    Article  CAS  Google Scholar 

  • Link S, El-Sayed MA (1999) Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 103:8410–8426

    Article  CAS  Google Scholar 

  • Liu H, Chen D, Tang F, Du G, Li L, Meng X, Liang W, Zhang Y, Teng Xu, Li Y (2008) Photothermal therapy of Lewis lung carcinoma in mice using gold nanoshells on carboxylated polystyrene spheres. Nanotechnology 19:455101

    Article  Google Scholar 

  • Loo Ch, Hirsch L, Lee M, Chang E, West J, Halas N, Drezek R (2005) Gold nanoshell bioconjugates for molecular imaging in living cells. Opt Lett 30:1012–1014

    Article  CAS  Google Scholar 

  • Matsui I (2005) Nanoparticles for electronic device applications: a brief review. J Chem Eng Jpn 38:535–546

    Article  CAS  Google Scholar 

  • Messinger BJ, Ulrich von Raben K, Chang RK (1981) Local fields at the surface of noble-metal microspheres. Phys Rev B 24:649–657

    Article  CAS  Google Scholar 

  • Mie G (1908) Beitrige zur Optik trUber Medien, speziell kolloidaler Metallosungen. Ann Phys (Leipzig) 25:376–445 (in German)

    Google Scholar 

  • Miyanishi T, Sakai T, Nedyalkov NN, Obara M (2009) Femtosecond-laser nanofabrication onto silicon surface with near-field localization generated by plasmon polaritons in gold nanoparticles with oblique irradiation. App Phys A 96:843–850

    Article  CAS  Google Scholar 

  • Nedyalkov N, Sakai T, Miyanishi T, Obara M (2006a) Near field properties in the vicinity of gold nanoparticles placed on various substrates for precise nanostructuring. J Phys D 39:5037–5042

    Article  CAS  Google Scholar 

  • Nedyalkov N, Takada H, Obara M (2006b) Nanostructuring of silicon surface by femtosecond laser pulse mediated with enhanced near-field of gold nanoparticles. Appl Phys A 85:163–168

    Article  CAS  Google Scholar 

  • Nedyalkov NN, Atanasov PA, Obara M (2007a) Near-field properties of a gold nanoparticle array on different substrates excited by a femtosecond laser. Nanotechnology 18:305703

    Article  Google Scholar 

  • Nedyalkov N, Miyanishi T, Obara M (2007b) Enhanced near field mediated nanohole fabrication on silicon substrate by femtosecond laser pulse. Appl Surf Sci 253:6558–6562

    Article  CAS  Google Scholar 

  • Palik ED (1998) Handbook of optical constants of solids. Academic Press, San Diego

  • Papavassiliou GC (1979) Optical properties of small inorganic and organic metal particles. Prog Solid State Chem 12:185–271

    Article  CAS  Google Scholar 

  • Park JB, Jaeckel B, Parkinson BA (2006) Fabrication and investigation of nanostructures on transition metal dichalcogenide surfaces using a scanning tunneling microscope. Langmuir 22:5334–5340

    Article  CAS  Google Scholar 

  • Plech A, Leiderer P, Boneberg J (2008) Femtosecond laser near field ablation. Laser Photon Rev 2:1–17

    Article  Google Scholar 

  • Prodan E, Nordlander P, Halas NJ (2003) Electronic structure and optical properties of gold nanoshells. Nano Lett 3:1411–1415

    Article  CAS  Google Scholar 

  • Pustovalov VK (2005) Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 308:103–108

    Article  CAS  Google Scholar 

  • Pustovalov VK, Babenko VA (2005) Computer modeling of optical properties of gold ellipsoidal nanoparticles at laser radiation wavelengths. Laser Phys Lett 2:84–88

    Article  CAS  Google Scholar 

  • Quinten M (1995) Local fields and Poynting vectors in the vicinity of the surface of small spherical particles. Z Phys D 35:217–224

    Article  CAS  Google Scholar 

  • Schleunitz A, Steffes H, Chabicovsky R, Obermeier E (2007) Optical gas sensitivity of a metaloxide multilayer system with gold-nano-clusters. Sens Actuators B 127:210–216

    Article  Google Scholar 

  • Shirma P, Brown S, Walter G, Santra S, Moudgil B (2006) Nanoparticles for bioimaging. Adv Colloid Interf Sci 123:471–485

    Article  Google Scholar 

  • Taflove A, Hagness SC (2000) Computational electrodynamics: the finite-difference time-domain method. Artech House, Boston

    Google Scholar 

  • Vial A, Grimault AS, Macias D, Barchiesi D, Chapelle MI (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71:085416

    Article  Google Scholar 

  • Vo-Dinh T (2003) Biomedical photonics handbook. CRC Press, New York

    Book  Google Scholar 

  • Vogel A, Noack J, Hüttmann G, Paltauf G (2007) Mechanisms of femtosecond laser nanoprocessing of biological cells and tissues. J Phys Conf Ser 59:249–254

    Article  Google Scholar 

  • Volkov AN, Sevilla C, Zhigilei LV (2007) Numerical modeling of short pulse laser interaction with Au nanoparticle surrounded by water. Appl Surf Sci 253:6394–6399

    Article  CAS  Google Scholar 

  • von Allmen M (1987) Laser-beam interactions with materials. Physical principles and applications. Springer, Berlin

    Google Scholar 

  • Wang ZB, Luk’yanchuk BS, Hong MH, Lin Y, Chong TC (2004) Energy flow around a small particle investigated by classical Mie theory. Phys Rev B 70:035418

    Article  Google Scholar 

  • Wellershoff S, Hohlfeld J, Güdde J, Matthias E (1999) The role of electron–phonon coupling in femtosecond laser damage of metals. Appl Phys A 69:S99–S107

    CAS  Google Scholar 

  • Zharov VP, Kim J, Curiel DT, Everts M (2005a) Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1:326–345

    CAS  Google Scholar 

  • Zharov VP, Letfullin RR, Galitovskaya EN (2005b) Microbubbles-overlapping mode for laser killing of cancer cells with absorbing nanoparticle clusters. J Phys D 38:2571–2581

    Article  CAS  Google Scholar 

  • Zheng X, Xu W, Corredor Ch, Sh Xu, An J, Zhao B, Lombardi JR (2007) Laser-induced growth of monodisperse silver nanoparticles with tunable surface plasmon resonance properties and a wavelength self-limiting effect. J Phys Chem C 111(41):14962–14967

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support received from Grant-in-Aid for the Global COE for High-Level Global Cooperation for Leading-Edge Platform on Access Spaces from MEXT in Japan, and Bulgarian Science Fund, under the contract D0 02-293.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Nedyalkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nedyalkov, N.N., Imamova, S., Atanasov, P.A. et al. Interaction between ultrashort laser pulses and gold nanoparticles: nanoheater and nanolens effect. J Nanopart Res 13, 2181–2193 (2011). https://doi.org/10.1007/s11051-010-9976-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-9976-4

Keywords

Navigation