Skip to main content
Log in

Extreme Light Concentration Inside Plasmonic Gold and Silver Nanoparticles During Laser Irradiation

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Computer modeling of the distributions of laser radiation intensities concentrated inside spherical gold and silver nanoparticles with the radii in the range 10–100 nm was carried out during laser irradiation with wavelengths 400, 532, and 800 nm. Distributions of laser intensity are inhomogeneous for investigated values of nanoparticle sizes and laser wavelengths. Here, we show new effect of extreme light intensity concentration in shadow hemisphere of gold and silver nanoparticles with localizing light at the nanoscale for selected values of nanoparticle sizes and radiation wavelengths. No doubt that this effect exists for different NPs and wavelengths. These results can be applied in nanophotonics for construction of new plasmonic antennas and photonic components, and for the laser technologies of the preparation and the treatment of NPs with definite sizes, shapes, structure, size distribution, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Book  Google Scholar 

  2. Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  3. Maier S (2007) Plasmonics: fundamentals and applications. Springer, New York

    Google Scholar 

  4. Stockman M (2011) Nanoplasmonics: past, present and glimpse into future. Opt Express 19:22029–22106

    Article  Google Scholar 

  5. Sonnefraud Y, Koh A, McComb D, Maier S (2012) Nanoplasmonics: engineering and observation of localized plasmon modes. Laser Photonics Rev 6:277–295

    Article  Google Scholar 

  6. Zheludev N (2006) Single NP as photonic switch and optical memory element. J Optics A Pure Appl Opt 8:S1–S7

    Article  Google Scholar 

  7. Schuller J et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204

    Article  CAS  Google Scholar 

  8. Colombo C, Krogstrup P, Nygård J, Brongersma ML, Fontcuberta A (2011) Engineering light absorption in single-nanowire solar cells with metal NPs. New J Phys 13:123026

    Article  Google Scholar 

  9. Kauranen M, Zayats A (2012) Nonlinear plasmonics. Nat Photon 6:737–748

    Article  CAS  Google Scholar 

  10. Arnold M, Blaber M, Ford M (2014) Local plasmon resonances of metal-in-metal core-shells. Opt Express 22:3186–3198

    Article  Google Scholar 

  11. Demichel O et al (2014) Selective excitation of bright and dark plasmonic resonances of single gold nanorods. Opt Express 22:15088–15096

    Article  CAS  Google Scholar 

  12. Pustovalov VK (2005) Theoretical study of heating of spherical NPs in media by short laser pulses. Chem Phys 308:103–108

    Article  CAS  Google Scholar 

  13. Werner D, Furube A, Okamoto T, Hashimoto S (2011) Femtosecond laser-induced size reduction of aqueous gold NPs: in situ and pump–probe spectroscopy investigations revealing coulomb explosion. J Phys Chem C 115:8503–8512

    Article  CAS  Google Scholar 

  14. Fan C et al (2012) Gold NPs reshaped by ultrafast laser irradiation inside a silica-based glass, studied through optical properties. J Phys Chem C 116:2647–2655

    Article  CAS  Google Scholar 

  15. Wang J et al (2011) Photothermal reshaping of gold NPs in a plasmonic absorber. Opt Express 19:14726–14734

    Article  CAS  Google Scholar 

  16. Bruzzone S, Malvaldi M (2009) Local field effects on laser-induced heating of metal NPs. J Phys Chem C 113:15805–15810

    Article  CAS  Google Scholar 

  17. Pustovalov V (2011) Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters. Laser Phys 21:906–912

    Article  CAS  Google Scholar 

  18. Garwe F et al (2008) Optically controlled thermal management on the nanometer length scale. Nanotechnology 19:055207

    Article  CAS  Google Scholar 

  19. Giammanco F, Giorgetti E, Marsili P, Giusti A (2010) Experimental and theoretical analysis of photofragmentation of Au NPs by picosecond laser radiation. J Phys Chem C 114:3354–3363

    Article  CAS  Google Scholar 

  20. Pustovalov VK, Smetannikov AS (2014) Analytical and computer modeling of thermal processes of laser interaction with single nanoparticle. RSC Adv 4:55760–55772

    Article  CAS  Google Scholar 

  21. Astafyeva LG, Babenko VA (2004) Interaction of electromagnetic radiation with silicate spheroidal aerosol particles. J Quant Spectrosc Radiat Transf 88:9–14

    Article  CAS  Google Scholar 

  22. Astafyeva L, Ledneva H (2006) Thermal effect of radiation on dye-doped polysterene particle covered with deposited silver layer. Appl Opt 45:3878–3884

    Article  CAS  Google Scholar 

  23. Li C, Cattawar GW, Zhai P-W (2005) Electric and magnetic energy density distributions inside and outside dielectric particles illuminated by a plane electromagnetic wave. Opt Express 13:4554–4559

    Article  Google Scholar 

  24. Thormalen I, Straub J, Grigull U (1985) Refractive index of water and its dependence on wavelength, temperature and density. J Phys Chem Ref Data 14:933–945

    Article  Google Scholar 

  25. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379

    Article  CAS  Google Scholar 

  26. Babenko VA, Astafyeva LG, Kuzmin VN (2003) Electromagnetic scattering in disperse media. Springer-Praxis, Berlin

    Google Scholar 

  27. Pustovalov VK, Babenko VA (2004) Optical properties of gold NPs at laser radiation wavelengths for laser applications in nanotechnology and medicine. Las Phys Lett 1:516–520

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Astafyeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astafyeva, L.G., Pustovalov, V.K. Extreme Light Concentration Inside Plasmonic Gold and Silver Nanoparticles During Laser Irradiation. Plasmonics 10, 1439–1445 (2015). https://doi.org/10.1007/s11468-015-9954-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-015-9954-x

Keywords

Navigation