Skip to main content
Log in

Feasible Microwave-Supported Silver Nanoparticles Synthesis by Employing Sycamore Leaves Extract, and Their Characterization

  • Research Paper
  • Published:
Iranian Journal of Science Aims and scope Submit manuscript

Abstract

A microwave-aided process is designated to synthesize silver nanoparticles to conduct the fast reaction, hinder the enzymatic action, and maintain the environmentally clean process. In this current study, the sycamore leaves extract reduces Ag+ to Ag0 by microwave irradiation where the plant functions as a capping and a reducing agent. The affirmation of silver nanoparticles (AgNPs) formation is realized from the absorption spectra of UV–Vis for the surface plasmon resonance (SPR) peak at λ = 450 nm. A linear increase between the elevation of SPR and the reaction heating time is resolved. A marginal upsurge in the pH of the reaction mixture throughout the AgNPs formation coincides with the projected mechanism. The consequences of particle size and distribution in dissimilar pH values are revealed. FT-IR spectrum designates the attendance of the representative functional groups of the plant extract biomolecules. Elemental analysis by XPS supports other findings throughout the study. Bandgap calculations reveal the correlation between pH impact and the resulting values. The bio-functionalized silver nanoparticles colloidal solution maintained its stability for a prolonged storage duration of 4 months at ambient conditions. This process provides a reliable and rapid route for AgNPs green synthesis beneficial for a wide set of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

All the results and data produced or examined throughout the current study are involved in this published manuscript (including its supplementary data files).

References

  • Abdel-Fattah WI, Sallam ASM, Atwa NA, Salama E, Maghraby AM, Ali GW (2014) Functionality, antibacterial efficiency and biocompatibility of nanosilver/chitosan/silk/phosphate scaffolds 1. Synthesis and optimization of nanosilver/chitosan matrices through gamma rays irradiation and their antibacterial activity. Mater Res Express 1(3):35024. https://doi.org/10.1088/2053-1591/1/3/035024

    Article  Google Scholar 

  • Anjana VN, Joseph M, Francis S, Joseph A, Koshy EP, Mathew B (2021) Microwave assisted green synthesis of silver nanoparticles for optical, catalytic, biological and electrochemical applications. Artif Cells, Nanome Biotechnol 49(1):438–449. https://doi.org/10.1080/21691401.2021.1925678

    Article  Google Scholar 

  • Callegari A, Tonti D, Chergui M (2003) Photochemically grown silver nanoparticles with wavelength-controlled size and shape. Nano Lett 3(11):1565–1568. https://doi.org/10.1021/nl034757a

    Article  Google Scholar 

  • Chen J, Wang J, Zhang X, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108(2):421–424

    Article  Google Scholar 

  • Cheng F, Betts JW, Kelly SM, Schaller J, Heinze T (2013) Synthesis and antibacterial effects of aqueous colloidal solutions of silver nanoparticles using aminocellulose as a combined reducing and capping reagent. Green Chem 15(4):989–998. https://doi.org/10.1039/C3GC36831A

    Article  Google Scholar 

  • Dimitrijevic NM, Bartels DM, Jonah CD, Takahashi K, Rajh T (2001) Radiolytically induced formation and optical absorption spectra of colloidal silver nanoparticles in supercritical ethane. J Phys Chem B 105(5):954–959. https://doi.org/10.1021/jp0028296

    Article  Google Scholar 

  • El Hotaby W, Sherif H, Hemdan B, Khalil W, Khalil S (2017) Assessment of in situ-prepared polyvinylpyrrolidone-silver nanocomposite for antimicrobial applications. Acta Phys Pol, A 131(6):1554–1560

    Article  Google Scholar 

  • Elsayed H, Hasanin M, Rehan M (2021) Enhancement of multifunctional properties of leather surface decorated with silver nanoparticles (Ag NPs). J Mol Struct 1234:130130

    Article  Google Scholar 

  • Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M (2016) Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci Rep 6(1):32539. https://doi.org/10.1038/srep32539

    Article  Google Scholar 

  • Gutierrez M, Henglein A (1993) Formation of colloidal silver by" push-pull" reduction of silver (1+). J Phys Chem 97(44):11368–11370

    Article  Google Scholar 

  • Hasanin MS, Emam M, Soliman MMH, Latif RRA, Salem MMM, El Raey MA, Eisa WH (2022) Green silver nanoparticles based on lavandula coronopifolia aerial parts extract against mycotic mastitis in cattle. Biocatal Agric Biotechnol 42:102350

    Article  Google Scholar 

  • Hu R, Yong K-T, Roy I, Ding H, He S, Prasad PN (2009) Metallic nanostructures as localized plasmon resonance enhanced scattering probes for multiplex dark-field targeted imaging of cancer cells. J Phys Chem C 113(7):2676–2684. https://doi.org/10.1021/jp8076672

    Article  Google Scholar 

  • Itoh M, Kakuta T, Nagaoka M, Koyama Y, Sakamoto M, Kawasaki S, Umeda N, Kurihara M (2009) Direct transformation into silver nanoparticles via thermal decomposition of oxalate-bridging silver oleylamine complexes. J Nanosci Nanotechnol 9(11):6655–6660

    Article  Google Scholar 

  • Jayaseelan C, Rahuman AA, Rajakumar G, Kirthi V, Arivarasan S, Thirunavukkarasu M, Sampath B, Asokan K, Chinnaperumal Z, Abduz A, Elango G (2011) Synthesis of pediculocidal and larvicidal silver nanoparticles by leaf extract from heartleaf moonseed plant tinospora cordifolia miers. Parasitol Res 109(1):185–194. https://doi.org/10.1007/s00436-010-2242-y

    Article  Google Scholar 

  • Joseph S, Mathew B (2015) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191

    Article  Google Scholar 

  • Ju-Nam Y, Lead JR (2008) Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications. Sci Total Environ 400(1):396–414

    Article  Google Scholar 

  • Kahrilas GA, Wally LM, Fredrick SJ, Hiskey M, Prieto AL, Owens JE (2014) Microwave-assisted green synthesis of silver nanoparticles using orange peel extract. ACS Sustain Chem Eng 2(3):367–376. https://doi.org/10.1021/sc4003664

    Article  Google Scholar 

  • Kalaivani R, Maruthupandy M, Muneeswaran T, Hameedha Beevi A, Anand M, Ramakritinan CM, Kumaraguru AK (2018) Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications. Front Lab Med 2(1):30–35

    Article  Google Scholar 

  • Kaur N, Singh A, Ahmad W (2022) Microwave assisted green synthesis of silver nanoparticles and its application: a review. J Inorg Organometall Polym Mater. https://doi.org/10.1007/s10904-022-02470-2

    Article  Google Scholar 

  • Khalil MMH, Ismail EH, El-Baghdady KZ, Mohamed D (2014) Green synthesis of silver nanoparticles using olive leaf extract and its antibacterial activity. Arab J Chem 7(6):1131–1139

    Article  Google Scholar 

  • Kim K, Jung B, Kim J, Kim W (2010) Effects of embedding non-absorbing nanoparticles in organic photovoltaics on power conversion efficiency. Sol Energy Mater Sol Cells 94(10):1835–1839

    Article  Google Scholar 

  • Kouvaris P, Delimitis A, Zaspalis V, Papadopoulos D, Tsipas SA, Michailidis N (2012) Green synthesis and characterization of silver nanoparticles produced using arbutus unedo leaf extract. Mater Lett 76:18–20

    Article  Google Scholar 

  • Makvandi P, Ali GW, Sala D, Francesca A-F, Wafa I, Borzacchiello A (2019) Biosynthesis and characterization of antibacterial thermosensitive hydrogels based on corn silk extract, hyaluronic acid and nanosilver for potential wound healing. Carbohydr Polym 223:115023

    Article  Google Scholar 

  • Makvandi P, Nikfarjam N, Sanjani NS, Qazvini NT (2015) Effect of silver nanoparticle on the properties of poly (methyl methacrylate) nanocomposite network made by in situ photoiniferter-mediated photopolymerization. Bull Mater Sci 38:1625–1631

    Article  Google Scholar 

  • Mani M, Pavithra S, Mohanraj K, Kumaresan S, Alotaibi SS, Eraqi MM, Gandhi AD, Babujanarthanam R, Maaza M, Kaviyarasu K (2021) Studies on the spectrometric analysis of metallic silver nanoparticles (ag nps) using basella alba leaf for the antibacterial activities. Environ Res 199:111274

    Article  Google Scholar 

  • Mohamed YMA, Elshahawy IE (2022) Antifungal activity of photo-biosynthesized silver nanoparticles (AgNPs) from organic constituents in orange peel extract against phytopathogenic macrophomina phaseolina. Eur J Plant Pathol 162(3):725–738. https://doi.org/10.1007/s10658-021-02434-1

    Article  Google Scholar 

  • Moteriya P, Chanda S (2020) Green synthesis of silver nanoparticles from caesalpinia pulcherrima leaf extract and evaluation of their antimicrobial, cytotoxic and genotoxic potential (3-in-1 system). J Inorg Organometall Polym Mater 30(10):3920–3932. https://doi.org/10.1007/s10904-020-01532-7

    Article  Google Scholar 

  • Moulin E, Sukmanowski J, Schulte M, Gordijn A, Royer FX, Stiebig H (2008) Thin-film silicon solar cells with integrated silver nanoparticles. Thin Solid Films 516(20):6813–6817

    Article  Google Scholar 

  • Moustafa H, Ahmed EM, Morsy M (2022) Bio-based antibacterial packaging from decorated bagasse papers with natural rosin and synthesised GO-Ag nanoparticles. Mater Technol 37(13):2766–2776. https://doi.org/10.1080/10667857.2022.2074939

    Article  Google Scholar 

  • Nam J-M, Park S-J, Mirkin CA (2002) Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 124(15):3820–3821. https://doi.org/10.1021/ja0178766

    Article  Google Scholar 

  • Narayanan KB, Sakthivel N (2011) Extracellular synthesis of silver nanoparticles using the leaf extract of coleus amboinicus lour. Mater Res Bull 46(10):1708–1713

    Article  Google Scholar 

  • Pant G, Nayak N, Gyana Prasuna R (2013) Enhancement of antidandruff activity of shampoo by biosynthesized silver nanoparticles from solanum trilobatum plant leaf. Appl Nanosci 3(5):431–439. https://doi.org/10.1007/s13204-012-0164-y

    Article  Google Scholar 

  • Parveen S, Misra R, Sahoo Sanjeeb K (2012) Nanoparticles: a boon to drug delivery, therapeutics, diagnostics and imaging. Nanomed: Nanotechnol, Biol Med 8(2):147–166

    Article  Google Scholar 

  • Philip D, Unni C, Aromal SA, Vidhu VK (2011) Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Acta Part a: Mol Biomol Spectrosc 78(2):899–904

    Article  Google Scholar 

  • Prabhu D, Arulvasu C, Babu G, Manikandan R, Srinivasan P (2013) Biologically synthesized green silver nanoparticles from leaf extract of Vitex Negundo L. Induce growth-inhibitory effect on human colon cancer cell line HCT15. Process Biochem 48(2):317–324

    Article  Google Scholar 

  • Raghunandan D, Mahesh BD, Basavaraja S, Balaji SD, Manjunath SY, Venkataraman A (2011) Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (psidium guajava) leaf extract. J Nanoparticle Res 13(5):2021–2028. https://doi.org/10.1007/s11051-010-9956-8

    Article  Google Scholar 

  • Rani PU, Rajasekharreddy P (2011) Green synthesis of silver-protein (core–shell) nanoparticles using piper Betle L. Leaf extract and its ecotoxicological studies on Daphnia Magna. Colloid Surf a: Physicochem Engi Asp 389(1):188–194

    Article  Google Scholar 

  • Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang J-S (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using nerium oleander against anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(3):981–990. https://doi.org/10.1007/s00436-012-3220-3

    Article  Google Scholar 

  • Sadeq MS, Ibrahim A (2021) The path towards wide-bandgap and uv-transparent lithium phosphate glasses doped with cobalt oxide for optical applications. J Non-Crystalline Sol 569:120983

    Article  Google Scholar 

  • Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108(3):693–702. https://doi.org/10.1007/s00436-010-2115-4

    Article  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interf Sci 145(1):83–96

    Article  Google Scholar 

  • Sherif HHA, El Hotaby W, Khalil SKH, Hemdan BA, Khalil WA (2022) Preparation, characterization, and biological assessment of functionalized reduced graphene oxide-silver nanocomposite. J Mater Res. https://doi.org/10.1557/s43578-022-00845-2

    Article  Google Scholar 

  • Shiju NR, Guliants VV (2009) Recent developments in catalysis using nanostructured materials. Appl Catal a: Gen 356(1):1–17

    Article  Google Scholar 

  • Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using ocimum sanctum (tulsi) leaf extract and screening its antimicrobial activity. J Nanoparticle Res 13(7):2981–2988

    Article  Google Scholar 

  • Song JY, Kwon E-Y, Kim BS (2012) Antibacterial latex foams coated with biologically synthesized silver nanoparticles using magnolia kobus leaf extract. Korean J Chem Eng 29(12):1771–1775. https://doi.org/10.1007/s11814-012-0082-4

    Article  Google Scholar 

  • Suganya A, Murugan K, Kovendan K, Mahesh Kumar P, Hwang JS (2013) Green synthesis of silver nanoparticles using murraya koenigii leaf extract against anopheles stephensi and aedes aegypti. Parasitol Res 112(4):1385–1397. https://doi.org/10.1007/s00436-012-3269-z

    Article  Google Scholar 

  • Sun Q, Cai X, Li J, Zheng M, Chen Z, Yu C-P (2014) Green synthesis of silver nanoparticles using tea leaf extract and evaluation of their stability and antibacterial activity. Colloid Surf a: Physicochem Eng Asp 444:226–231

    Article  Google Scholar 

  • Sundaravadivelan C, Padmanabhan N, Madanagopal S, Prabhu and Kishmu, Lingan, (2013) Biosynthesized silver nanoparticles from pedilanthus tithymaloides leaf extract with anti-developmental activity against larval instars of aedes aegypti L. (Diptera; Culicidae). Parasitol Res 112(1):303–311. https://doi.org/10.1007/s00436-012-3138-9

    Article  Google Scholar 

  • Tran HV, Tran LD, Ba CT, Vu HD, Nguyen TN, Pham DG, Nguyen PX (2010) Synthesis, characterization, antibacterial and antiproliferative activities of monodisperse chitosan-based silver nanoparticles. Colloid Surf a: Physicochem Eng Asp 360(1):32–40

    Article  Google Scholar 

  • Togashi T, Nakayama M, Miyake R, Uruma K, Kanaizuka K, Kurihara M (2017) N, N-diethyl-diaminopropane-copper(Ii) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals. Dalton Trans 46(37):12487–12493. https://doi.org/10.1039/C7DT02510F

    Article  Google Scholar 

  • Togashi T, Nakayama M, Hashimoto A, Ishizaki M, Kanaizuka K, Kurihara M (2018) Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex. Dalton Trans 47(15):5342–5347. https://doi.org/10.1039/C8DT00345A

    Article  Google Scholar 

  • Togashi T, Tsuchida K, Soma S, Nozawa R, Matsui J, Kanaizuka K, Kurihara M (2020) Size-tunable continuous-seed-mediated growth of silver nanoparticles in alkylamine mixture via the stepwise thermal decomposition of silver oxalate. Chem Mater 32(21):9363–9370. https://doi.org/10.1021/acs.chemmater.0c03303

    Article  Google Scholar 

  • Vanaja M, Annadurai G (2013) Coleus aromaticus leaf extract mediated synthesis of silver nanoparticles and its bactericidal activity. Appl Nanosci 3(3):217–223. https://doi.org/10.1007/s13204-012-0121-9

    Article  Google Scholar 

  • Yin B, Ma H, Wang S, Chen S (2003) Electrochemical synthesis of silver nanoparticles under protection of poly(N-vinylpyrrolidone). J Phys Chem B 107(34):8898–8904. https://doi.org/10.1021/jp0349031

    Article  Google Scholar 

  • Zhang Y, Cheng X, Zhang Y, Xue X, Fu Y (2013) Biosynthesis of silver nanoparticles at room temperature using aqueous aloe leaf extract and antibacterial properties. Colloid Surf a: Physicochem Eng Asp 423:63–68

    Article  Google Scholar 

  • Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, Han Z (2014) Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloid Surf a: Physicochem Eng Asp 444:180–188

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Elzwawy.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Physics A. Zakery.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, M.A., Elzwawy, A., Elbashar, Y. et al. Feasible Microwave-Supported Silver Nanoparticles Synthesis by Employing Sycamore Leaves Extract, and Their Characterization. Iran J Sci 47, 1385–1395 (2023). https://doi.org/10.1007/s40995-023-01470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-023-01470-2

Keywords

Navigation