Skip to main content
Log in

Surface functionalization of titanium dioxide nanoparticles with alkanephosphonic acids for transparent nanocomposites

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The surface functionalization of rutile titanium dioxide nanoparticles with 1-decylphosphonic acid and diethyl undec-10-enyl phosphonate in a two-stage process, involving a change in reaction medium, is described. Similarly, 1-decylphosphonic acid and diethyl 1-decylphosphonate were employed as surface modifiers. The nanoparticles coated in two successive steps formed stable, transparent dispersions in toluene. Surface functionalization was monitored using thermogravimetric analysis (TGA), which showed enhanced surface coverage after the second capping step. Incorporation of C=C-terminal surface coupling molecules in the second stage was directly proved using FTIR. Dynamic light scattering measurements showed that the dual-functionalized particles possessed a uniform size of around 13 nm. Particle dimensions were further analyzed using atomic force microscopy (AFM) and transmission electron microscopy (TEM). Transparent nanocomposites were formed by introducing the functionalized nanoparticles into a poly(benzyl acrylate) matrix. The refractive index of poly(benzyl acrylate) composites, measured by spectroscopic ellipsometry, increased from 1.57 for the pure polymer to 1.63 for 14.0 vol.% TiO2 at λ = 586 nm. Nanocomposite films with particle weight percentages of up to 30% (9.5 vol.%) showed a high light transmittance of around 90% at wavelengths above λ = 400 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Al-Badri H, About-Jaudet E, Collignon N (1994) Efficient synthesis of substituted 2-diethylphosphonylbuta-1,3-dienes. Synthesis 1072–1078

  • Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465

    Article  CAS  Google Scholar 

  • Aspnes DE (1982) Local-field effects and effective-medium theory: a microscopic perspective. Am J Phys 50:704–709

    Article  Google Scholar 

  • Bhattacharya AK, Thyagarajan G (1981) The Michaelis–Arbuzov rearrangement. Chem Rev 81:415–430

    Article  CAS  Google Scholar 

  • Brovelli D, Hähner G, Ruiz L, Hofer R, Kraus G, Waldner A, Schlösser J, Oroszlan P, Ehrat M, Spencer MD (1999) Highly oriented, self-assembled alkanephosphate monolayers on tantalum(V) oxide surfaces. Langmuir 15:4324–4327

    Article  CAS  Google Scholar 

  • Buonsanti R, Grillo V, Carlino E, Giannini C, Kipp T, Cingolani R, Cozzoli PD (2008) Nonhydrolytic synthesis of high-quality anisotropically shaped brookite TiO2 nanocrystals. J Am Chem Soc 130:11223–11233

    Article  CAS  Google Scholar 

  • Carbonneau C, Frantz R, Durand J-O, Granier M, Lanneau GF, Corriu RJP (2002) Studies of the hydrolysis of ethyl and tert-butyl phosphonates covalently bonded to silica xerogels. J Mater Chem 12:540–545

    Article  CAS  Google Scholar 

  • Caseri W (2009) Inorganic nanoparticles as optically effective additives for polymers. Chem Eng Comm 196:549–572

    Article  CAS  Google Scholar 

  • Chang C-M, Chang C-L, Chang C-C (2006) Synthesis and optical properties of soluble polyimide/titania hybrid thin films. Macromol Mater Eng 291:1521–1528

    Article  CAS  Google Scholar 

  • Chau JLH, Lin Y-M, Li A-K, Su W-F, Chang K-S, Hsu SL-C, Li T-L (2007) Transparent high refractive index nanocomposite thin films. Mater Lett 61:2908–2910

    Article  CAS  Google Scholar 

  • Chau JLH, Tung C-T, Lin Y-M, Li A-K (2008) Preparation and optical properties of titania/epoxy nanocomposite coatings. Mater Lett 62:3416–3418

    Article  CAS  Google Scholar 

  • Convertino A, Leo G, Tamborra M, Sciancalepore C, Striccoli M, Curri ML, Agostiano A (2007) TiO2 colloidal nanocrystals functionalization of PMMA: a tailoring of optical properties and chemical adsorption. Sens Actuators B 126:138–143

    Article  Google Scholar 

  • Cozzoli PD, Kornowski A, Weller H (2003) Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. J Am Chem Soc 125:14539–14548

    Article  CAS  Google Scholar 

  • Fan X, Lin L, Messersmith PB (2006) Surface-initiated polymerization from TiO2 nanoparticle surfaces through a biomimetic initiator: a new route toward polymer-matrix nanocomposites. Compos Sci Technol 66:1198–1204

    Article  CAS  Google Scholar 

  • Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1996) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435

    Article  CAS  Google Scholar 

  • Gao W, Dickinson L, Grozinger C, Morin FG, Reven L (1999) Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12:6429–6435

    Article  Google Scholar 

  • Gauvry N, Mortier J (2001) Dealkylation of dialkyl phosphonates with boron tribromide. Synthesis 553–554

  • Guerrero G, Mutin PH, Vioux A (2001) Anchoring of phosphonate and phosphinate coupling molecules on titania particles. Chem Mater 13:4367–4373

    Article  CAS  Google Scholar 

  • Helmy R, Fadeev AY (2002) Self-assembled monolayers supported on TiO2: comparison of C18H37SiX3 (X = H, Cl, OCH3), C18H37Si(CH3)2Cl, and C18H37PO(OH)2. Langmuir 18:8924–8928

    Article  CAS  Google Scholar 

  • Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49:1540–1573

    Article  CAS  Google Scholar 

  • Iijima M, Kobayakawa M, Kamiya H (2009) Tuning the stability of TiO2 nanoparticles in various solvents by mixed silane alkoxides. J Coll Int Sci 337:61–65

    Article  CAS  Google Scholar 

  • Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Pol J 45:630–638

    Article  CAS  Google Scholar 

  • Konovalova TA, Kispert LD, Konovalov VV (1999) Surface modification of TiO2 nanoparticles with carotenoids. EPR study. J Phys Chem B 103:4672–4677

    Article  CAS  Google Scholar 

  • Lafont U, Simonin L, Gaberscek M, Kelder EM (2007) Carbon coating via an alkyl phosphonic acid grafting route: application on TiO2. J Power Sources 174:1104–1108

    Article  CAS  Google Scholar 

  • Lü C, Yang B (2009) High refractive index organic-inorganic nanocomposites: design, synthesis and application. J Mater Chem 19:2884–2901

    Article  Google Scholar 

  • Luschtinetz R, Frenzel J, Milek T, Seifert G (2009) Adsorption of phosphonic acid at the TiO2 anatase (101) and rutile (110) surfaces. J Phys Chem C 113:5730–5740

    Article  CAS  Google Scholar 

  • Maxwell Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc Lond A 203:385–420

    Article  Google Scholar 

  • McElwee J, Helmy R, Fadeev AY (2005) Thermal stability of organic monolayers chemically grafted to minerals. J Colloid Interface Sci 285:551–556

    Article  CAS  Google Scholar 

  • Misra TK, Liu C-Y (2007) Synthesis, isolation, and redispersion of resorcinarene-capped anatase TiO2 nanoparticles in nonaqueous solvents. J Colloid Interface Sci 310:178–183

    Article  CAS  Google Scholar 

  • Mutin PH, Guerrero G, Vioux A (2003) Organic–inorganic hybrid materials based on organophosphorus coupling molecules: from metal phosphonates to surface modification of oxides. Chimie 6:1153–1164

    Article  CAS  Google Scholar 

  • Mutin PH, Guerrero G, Vioux A (2005) Hybrid materials from organophosphorus coupling molecules. J Mater Chem 15:3761–3768

    Article  CAS  Google Scholar 

  • Nakayama N, Hayashi T (2007) Preparation and characterization of TiO2 and polymer nanocomposite films with high refractive index. J Appl Polym Sci 105:3662–3672

    Article  CAS  Google Scholar 

  • Niederberger M, Garnweitner G, Krumeich F, Nesper R, Cölfen H, Antonietti M (2004) Tailoring the surface and solubility properties of nanocrystalline titania by a nonaqueous in situ functionalization process. Chem Mater 16:1202–1208

    Article  CAS  Google Scholar 

  • Nussbaumer RJ, Caseri W, Tervoort T, Smith P (2002) Synthesis and characterization of surface-modified rutile nanoparticles and transparent polymer composites thereof. J Nanoparticle Res 4:319–323

    Article  CAS  Google Scholar 

  • Nussbaumer RJ, Caseri WR, Smith P, Tervoort T (2003) Polymer-TiO2 nanocomposites: a route towards visually transparent broadband UV filters and high refractive index materials. Macromol Mater Eng 288:44–49

    Article  CAS  Google Scholar 

  • Pénard A-L, Gacoin T, Boilot J-P (2007) Functionalized sol–gel coatings for optical applications. Acc Chem Res 40:895–902

    Article  Google Scholar 

  • Pignatelli F, Carzino R, Salerno M, Scotto M, Canale C, Distaso M, Rizzi F, Caputo G, Cozzoli PD, Cingolani R, Athanassiou A (2010) Directional enhancement of refractive index and tunable wettability of polymeric coatings due to preferential dispersion of colloidal TiO2 nanorods towards their surface. Thin Solid Films 518:4425–4431

    Article  CAS  Google Scholar 

  • Segall Y, Quistad GB, Casida JE (2003) Cannabinoid CB1 receptor chemical affinity probes: methods suitable for preparation of isopropyl [11, 12–3H]dodecylfluorophosphonate and [11, 12–3H]dodecanesulfonyl fluoride. Synth Commun 33:2151–2159

    Article  CAS  Google Scholar 

  • Schutte HH, Hempenius, MA, Vancso GJ (2007) Novel monomeric and polymeric materials. Patent Pub. No.: WO/2007/082919, International Application No.: PCT/EP2007/050512

  • Stuart BH (2004) Infrared spectroscopy: fundamentals and applications. Wiley, Chichester

    Book  Google Scholar 

  • Su H-W, Chen W-C (2008) Photosensitive high-refractive-index poly(acrylic acid)-graft-poly(ethylene glycol methacrylate) nanocrystalline titania hybrid films. Macromol Chem Phys 209:1778–1786

    Article  CAS  Google Scholar 

  • Tahir MN, Eberhardt M, Theato P, Faiß S, Janshoff A, Gorelik T, Kolb U, Tremel W (2006) Reactive polymers: a versatile toolbox for the immobilization of functional molecules on TiO2 nanoparticles. Angew Chem Int Ed 45:908–912

    Article  CAS  Google Scholar 

  • Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, New York

    Google Scholar 

  • Zhang Z, Zhong X, Liu S, Li D, Han M (2005) Aminolysis route to monodisperse titania nanorods with tunable aspect ratio. Angew Chem Int Ed 44:3466–3470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The University of Twente and the MESA+ Institute for Nanotechnology are acknowledged for financial support. Drs. Xiaofeng Sui is acknowledged for the AFM imaging, the authors thank Ing. Clemens Padberg for recording the FTIR spectra. Mr. Mark A. Smithers is acknowledged for acquiring the TEM images.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. A. Hempenius or G. J. Vancso.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruiterkamp, G.J., Hempenius, M.A., Wormeester, H. et al. Surface functionalization of titanium dioxide nanoparticles with alkanephosphonic acids for transparent nanocomposites. J Nanopart Res 13, 2779–2790 (2011). https://doi.org/10.1007/s11051-010-0166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0166-1

Keywords

Navigation