Skip to main content
Log in

Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The intensive use of nano-sized titanium dioxide (TiO2) particles in many different applications necessitates studies on their risk assessment as there are still open questions on their safe handling and utilization. For reliable risk assessment, the interaction of TiO2 nanoparticles (NP) with biological systems ideally needs to be investigated using physico-chemically uniform and well-characterized NP. In this article, we describe the reproducible production of TiO2 NP aerosols using spark ignition technology. Because currently no data are available on inhaled NP in the 10–50 nm diameter range, the emphasis was to generate NP as small as 20 nm for inhalation studies in rodents. For anticipated in vivo dosimetry analyses, TiO2 NP were radiolabeled with 48V by proton irradiation of the titanium electrodes of the spark generator. The dissolution rate of the 48V label was about 1% within the first day. The highly concentrated, polydisperse TiO2 NP aerosol (3–6 × 106 cm−3) proved to be constant over several hours in terms of its count median mobility diameter, its geometric standard deviation, and number concentration. Extensive characterization of NP chemical composition, physical structure, morphology, and specific surface area was performed. The originally generated amorphous TiO2 NP were converted into crystalline anatase TiO2 NP by thermal annealing at 950 °C. Both crystalline and amorphous 20-nm TiO2 NP were chain agglomerated/aggregated, consisting of primary particles in the range of 5 nm. Disintegration of the deposited TiO2 NP in lung tissue was not detectable within 24 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Almquist CB, Sahle-Demessie E, Enriquez J, Biswas P (2003) The photocatalytic oxidation of low concentration MTBE on titanium dioxide from groundwater in a falling film reactor. Environ Prog 22(1):14–24

    Article  CAS  Google Scholar 

  • Barnard AS (2010) One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nat Nanotechnol 5(4):271–274

    Article  CAS  Google Scholar 

  • Baron PA, Willeke K (2001) Aerosol measurement. Wiley Interscience, New York

    Google Scholar 

  • Baumeister W (2002) Electron tomography: towards visualizing the molecular organization of the cytoplasm. Curr Opin Struct Biol 12:679–684

    Article  CAS  Google Scholar 

  • Boffetta P, Soutar A, Cherrie JW, Granath F, Andersen A, Anttila A, Blettner M, Gaborieau V, Klug SJ, Langard S, Luce D, Merletti F, Miller B, Mirabelli D, Pukkala E, Adami HO, Weiderpass E (2004) Mortality among workers employed in the titanium dioxide production industry in Europe. Cancer Causes Control 15:697–706

    Article  Google Scholar 

  • Borm PJ, Schins RP, Albrecht C (2004) Inhaled particles and lung cancer, part B: paradigms and risk assessment. Int J Cancer 110:3–14

    Article  CAS  Google Scholar 

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Dankovic D, Kuempel E, Wheeler M (2007) An approach to risk assessment for TiO2. Inhal Toxicol 19(Suppl 1):205–212

    Article  CAS  Google Scholar 

  • Fryzek JP, Chadda B, Marano D, White K, Schweitzer S, McLaughlin JK, Blot WJ (2003) A cohort mortality study among titanium dioxide manufacturing workers in the United States. J Occup Environ Med 45:400–409

    Article  CAS  Google Scholar 

  • Geiser M, Kreyling WG (2010) Deposition and biokinetics of inhaled nanoparticles. Particle Fibre Toxicol 7:2. doi:10.1186/1743-8977-7-2

    Article  Google Scholar 

  • Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H, Semmler M, Im Hof V, Heyder J, Gehr P (2005) Ultrafine particles cross cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect 113:1555–1560

    Article  Google Scholar 

  • Geiser M, Casaulta M, Kupferschmid B, Schulz H, Semmler-Behnke M, Kreyling W (2008) The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am J Respir Cell Mol Biol 38:371–376

    Article  CAS  Google Scholar 

  • Gribb AA, Banfield JF (1997) Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am Mineral 82:717–728

    CAS  Google Scholar 

  • Heinrich U, Fuhst R, Rittinghausen S, Creutzenberg O, Bellmann B, Koch W, Levsen K (1995) Chronic inhalation exposure of Wistar rats and two different strains of mice to diesel engine exhaust, carbon black, and titanium dioxide. Inhal Toxicol 7:533–556

    Article  CAS  Google Scholar 

  • Jani PU, McCarthy DE, Florence AT (1994) Titanium dioxide (rutile) particle uptake from the rat GI tract and translocation to systemic organs after oral administration. Int J Pharm 105:157–168

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase? Nanotoxicology 2(1):33–42

    Article  CAS  Google Scholar 

  • Kapp N, Kreyling W, Schulz H, Im Hof V, Semmler M, Gehr P, Geiser M (2004) Identification of inhaled ultrafine titanium oxide particles by analytical electron microscopy in rat lungs. Microsc Res Tech 63:298–305

    Article  Google Scholar 

  • Karlsson MNA, Deppert K, Karlsson LS, Magnusson MH, Malm J-O, Srinivasan NS (2005) Compaction of agglomerates of aerosol nanoparticles: a compilation of experimental data. J Nanopart Res 7:43–49. doi:10.1007/s11051-004-7218-3

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler M, Erbe F, Mayer P, Takenaka S, Oberdörster G, Ziesenis A (2002) Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J Toxicol Environ Health 65(20):1513–1530

    Article  CAS  Google Scholar 

  • Kreyling WG, Semmler-Behnke M, Seitz J, Scymczak W, Wenk A, Mayer P, Oberdörster G (2009) Size dependence of the translocation of inhaled iridium and carbon nanoparticle aggregates from the lung of rats to the blood and secondary target organs. Inhal Toxicol 21(S1):55–60

    Article  CAS  Google Scholar 

  • Lekki J, Stachura Z, Dabros W, Stachura J, Menzel F, Reinert T, Butz T, Pallon J, Gontier E, Ynsa MD, Moretto P, Kertesz Z, Szikszai Z, Kiss AZ (2007) On the follicular pathway of percutaneous uptake of nanoparticles: ion microscopy and autoradiography studies. Nucl Instrum Methods Phys Res B 260:174–177

    Article  CAS  Google Scholar 

  • Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications. Water Res 42:4591–4602

    Article  CAS  Google Scholar 

  • Lomer MC, Hutchinson C, Volkert S, Greenfield SM, Catterall A, Thompson RP, Powell JJ (2004) Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 92(6):947–955

    Article  CAS  Google Scholar 

  • Ma-Hock L, Gamer AO, Landsiedel R, Leibold E, Frechen T, Sens B et al (2007) Generation and characterization of test atmospheres with nanomaterials. Inhal Toxicol 19(10):833–848

    Article  CAS  Google Scholar 

  • Nohynek GJ, Dufour EK, Roberts MS (2008) Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol Physiol 21:136–149

    Article  CAS  Google Scholar 

  • Rehman S, Ullah R, Butt AM, Gohar ND (2009) Strategies of making TiO2 and ZnO visible light active. J Hazard Mater 170:560–569

    Article  CAS  Google Scholar 

  • Semmler M, Seitz J, Erbe F, Mayer P, Heyder J, Oberdörster G, Kreyling WG (2004) Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal Toxicol 16(6–7):453–459

    Article  CAS  Google Scholar 

  • Semmler-Behnke M, Kreyling W, Lipka J, Fertsch S, Wenk A, Takenaka S, Schmid G, Brandau W (2008) Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4(12):2108–2111

    Article  CAS  Google Scholar 

  • Seto T, Shimada M, Okuyama K (1995) Evaluation of sintering of nanometer-sized titania using aerosol method. Aerosol Sci Technol 23(2):183–200

    Article  CAS  Google Scholar 

  • Takaoka A, Hasegawa T, Yoshida K, Mori H (2008) Microscopic tomography with ultra-HVEM and applications. Ultramicroscopy 108:230–238

    Article  CAS  Google Scholar 

  • Weber AP, Baltensperger U, Gaggeler HW, Schmidt-Ott A (1996) In situ characterization and structure modification of agglomerated aerosol particles. J Aerosol Sci 27(6):915–929

    Article  CAS  Google Scholar 

  • Yang GM, Zhuang H, Biswas P (1996) Characterization and sinterability of nanophase titania particles processed in flame reactors. NanoStruct Mater 7(6):675–689

    Article  CAS  Google Scholar 

  • Zhang H, Banfield JF (2000) Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J Phys Chem B 104:3481–3487

    Article  CAS  Google Scholar 

  • Zhang H, Finnegan M, Banfield JF (2001) Preparing single-phase nanocrystalline anatase from amorphous titania with particle sizes tailored by temperature. Nano Lett 1(2):81–85

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was partially funded by HMGU: EU FP7 projects—NeuroNano (NMP4-SL-2008-214547), ENPRA (NMP4-SL-2009-228789), and InLiveTox (NMP4-SL-2009-228625); UBA-Germany project: Z6 (55 410-31/3); UBern: Swiss National Science Foundation project (310030-120763); and Lund: the Nanometer Structure Consortium at Lund University. The authors express their sincere gratitude to Jürgen Daul and Dr. Achim Kleinrahm, ZAG Zyklotron AG, Karlsruhe, Germany, for their help in proton irradiation of the titanium electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang G. Kreyling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kreyling, W.G., Biswas, P., Messing, M.E. et al. Generation and characterization of stable, highly concentrated titanium dioxide nanoparticle aerosols for rodent inhalation studies. J Nanopart Res 13, 511–524 (2011). https://doi.org/10.1007/s11051-010-0081-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0081-5

Keywords

Navigation