Skip to main content
Log in

Ratiometric fluorescent nanoparticles for sensing temperature

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

A ratiometric type of fluorescent nanoparticle was prepared via an encapsulation–reprecipitation method. By introducing an alkoxysilanized dye as a reference, the nanoparticles (NPs) give both a green and a red fluorescence under one single-wavelength excitation. The resulted ratiometric fluorescence is found to be highly temperature-dependent in the physiological range (25–45 °C), with an intensity temperature sensitivity of −4.0%/°C. Given the small size (20–30 nm in diameter) and biocompatible nature (silica out layer), such kind of NPs were very promising as temperature nanosensors for cellular sensing and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3

References

  • Berry MT, May PS, Xu H (1996) Temperature dependence of the Eu3+ 5D0 lifetime in europium tris(2,2,6,6-tetramethyl-3,5-heptanedionato). J Phys Chem 100:9216–9222. doi:10.1021/jp953702x

    Article  CAS  Google Scholar 

  • Borisov SM, Klimant I (2008) Blue LED excitable temperature sensors based on a new europium(III) chelate. J Fluoresc 18:581–589. doi:10.1007/s10895-007-0302-1

    Article  CAS  PubMed  Google Scholar 

  • Borisov SM, Wolfbeis OS (2006) Temperature-sensitive europium(III) probes and their use for simultaneous luminescent sensing of temperature and oxygen. Anal Chem 78:5094–5101. doi:10.1021/ac060311d

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekharan N, Kelly LA (2001) A dual fluorescence temperature sensor based on perylene/exciplex interconversion. J Am Chem Soc 123:9898–9899. doi:10.1021/ja016153j

    Article  CAS  PubMed  Google Scholar 

  • Gallery JM, Gouterman M, Callis J et al (1994) Luminescent thermometry for aerodynamic measurements. Rev Sci Instrum 65:712–720

    Article  CAS  ADS  Google Scholar 

  • Gota C, Okabe K, Funatsu T et al (2009) Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J Am Chem Soc 131:2766–2767. doi:10.1021/ja807714j

    Article  CAS  PubMed  Google Scholar 

  • Hirsch LR, Stafford RJ, Bankson JA et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci USA 100:13549–13554. doi:10.1073/pnas.2232479100

    Article  CAS  ADS  PubMed  Google Scholar 

  • Huang XH, El-Sayed IH, Qian W et al (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128:2115–2120. doi:10.1021/ja057254a

    Article  CAS  PubMed  Google Scholar 

  • Khalil GE, Lau K, Phelan GD et al (2004) Europium beta-diketonate temperature sensors: effects of ligands, matrix, and concentration. Rev Sci Instrum 75:192–206. doi:10.1063/1.1632997

    Article  CAS  ADS  Google Scholar 

  • Lee J, Kotov NA (2007) Thermometer design at the nanoscale. Nanotoday 2:48–51

    Google Scholar 

  • Mitsuishi M, Kikuchi S, Miyashita T et al (2003) Characterization of an ultrathin polymer optode and its application to temperature sensors based on luminescent europium complexes. J Mater Chem 13:2875–2879. doi:10.1039/b307309b

    Article  CAS  Google Scholar 

  • Peng HS, Stich M, Yu JB et al (2010) Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv Mater 22:716–719. doi:10.1002/adma.200901614

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Samanta A (2002) Influence of the structure of the amino group and polarity of the medium on the photophysical behavior of 4-amino-1,8-naphthalimide derivatives. J Phys Chem A 106:4763–4771. doi:10.1021/jp013287a

    Article  CAS  Google Scholar 

  • Stich M, Nagl S, Wolfbeis OS et al (2008) A dual luminescent sensor material for simultaneous imaging of pressure and temperature on surfaces. Adv Funct Mater 18:1399–1406. doi:10.1002/adfm.200701199

    Article  CAS  Google Scholar 

  • Van Deun R, Nockemann P, Fias P et al (2005) Visible light sensitisation of europium(III) luminescence in a 9-hydroxyphenal-1-one complex. Chem Commun 5:590–592. doi:10.1039/b414703k

    Article  Google Scholar 

  • Yang C, Fu LM, Wang Y et al (2004) A highly luminescent europium complex showing visible-light-sensitized red emission: direct observation of the singlet pathway. Angew Chem Int Ed 43:5010–5013. doi:10.1002/anie.200454141

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was sponsored by the Alexander-von-Humboldt Foundation (Bonn) and National Natural Science Foundation of China (Grant Nos 10774012 and 10874014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Shang Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, HS., Huang, SH. & Wolfbeis, O.S. Ratiometric fluorescent nanoparticles for sensing temperature. J Nanopart Res 12, 2729–2733 (2010). https://doi.org/10.1007/s11051-010-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0046-8

Keywords

Navigation