Skip to main content
Log in

Cu x Ni1−x alloy nanoparticles embedded SiO2 films: synthesis and structure

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Cu–Ni fcc alloy nanoparticles (NPs) of tunable atomic ratios were generated in SiO2 films. The films were prepared using the Cu(NO3)2 and Ni(NO3)2 co-doped inorganic–organic hybrid silica sols by single dipping. Transparent, crack-free, glassy SiO2 films of 310 ± 10 nm in thickness embedded with high mol percent of Cu–Ni alloy NPs were yielded after annealing at 750 °C in 10% H2-90% Ar atmosphere. Nominal compositions of the films were 20 mol% (Cu–Ni)-80 mol% SiO2. Optical spectral study of the heat-treated films showed disappearance of Cu plasmon bands due to Cu–Ni alloy formation. Grazing incidence X-ray diffraction (GIXRD) studies revealed the formation of Cu–Ni alloy (2:1, 1:1 and 1:2) NPs inside the SiO2 film. GIXRD showed a systematic shifting of the diffraction peaks with respect to the fcc Cu–Ni alloy composition, maintaining the nominal ratios. Transmission electron microscopy (TEM) studies of the representative Cu0.5Ni0.5-doped film showed existence of homogeneously dispersed Cu–Ni alloy NPs of average size 6.35 nm inside the SiO2 matrix. The energy dispersive X-ray scattering (EDX) analysis of the individual NPs using the nano-probe (scanning TEM mode) confirmed the presence of both the Cu and Ni with the desired atomic ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmed T, Ramanujachary KV, Lofland SE, Furiato A, Gupta G, Shivaprasad SM, Ganguli AK (2008) Bimetallic Cu–Ni nanoparticles of varying composition (CuNi3, CuNi, Cu3Ni). Colloids Surf A 331:206–212

    Article  CAS  Google Scholar 

  • Apostolova I, Wesselinowa JM (2009) Possible low-Tc nanoparticles for use in magnetic hyperthermia treatments. Solid State Commun 149:986–990

    Article  CAS  Google Scholar 

  • Chatterjee J, Bettge M, Haik Z, Chen CJ (2005) Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications. J Magn Magn Mater 293:303–309

    Article  CAS  Google Scholar 

  • D’Acapito F, Battaglin G, Cattaruzza E, Gonella F, Maurizio C, Mazzoldi P, Mobilio S, Zontone F (2000) Cu–Ni alloy nanocluster formation by ion implantation in silicate glasses: structure and properties. Eur Phys J D 10:123–130

    Article  Google Scholar 

  • De G (1998) Sol-gel synthesis of metal nanoclusters-silica composite films. J Sol Gel Sci Technol 11:289–298

    Article  CAS  Google Scholar 

  • De G, Rao CNR (2003) Two dimensional Au and Au–Cu nanocrsystals with orientation in (111) plane embedded in glassy silica films. J Phys Chem B 107:13597–13600

    Article  CAS  Google Scholar 

  • De G, Mattei G, Mazzoldi P, Sada C, Battaglin G, Quaranta A (2000) Au–Cu alloy nanocluster doped SiO2 films by sol-gel processing. Chem Mater 12:2157–2160

    Article  CAS  Google Scholar 

  • Díaz-Parralejo A, Caruso R, Ortiz AL, Guiberteau F (2004) Densification and porosity evaluation of ZrO2-3 mol.%Y2O3 sol-gel thin films. Thin Solid Films 458:92–97

    Article  Google Scholar 

  • Falconieri M, Salvetti G, Cattaruzza E, Gonella F, Mazzoldi P, Piovesan M, Battaglin G, Polloni R (1998) Large third-order optical nonlinearity of nanocluster-doped glass formed by ion implantation of copper and nickel in silica. Appl Phys Lett 73:288–290

    Article  CAS  Google Scholar 

  • Ghosh SK, Grover AK, Dey GK, Kulkarni UD, Dusane RO, Suri AK, Banerjee S (2006) Structureal characterization of electrodeposited nanophase Ni–Cu alloys. J Mater Res 21:45–61

    Article  CAS  Google Scholar 

  • Jafarian M, Moghaddam RB, Mahjani MG, Gobal F (2006) Electro-catalytic oxidation of methanol on a Ni–Cu alloy in alkaline medium. J Appl Electrochem 36:913–918

    Article  CAS  Google Scholar 

  • James P, Eriksson O, Johansson B, Abrikosov IA (1999) Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Phys Rev B 59:419–430

    Article  CAS  Google Scholar 

  • Kim H, Lu C, Worrell WL, Vohs JM, Gorte RJ (2002) Cu–Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells. J Electrochem Soc 149:A247–A250

    Article  CAS  Google Scholar 

  • Kiran PP, Bhaktha BNS, Rao DN, De G (2004) Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag–Cu nanoclusters co-doped in SiO2 sol-gel films. J Appl Phys 96:6717–6723

    Article  CAS  Google Scholar 

  • Lázaro MJ, Echegoyen Y, Suelves I, Palacios JM, Moliner R (2007) Decomposition of methane over Ni–SiO2 and Ni–Cu–SiO2 catalysts: effect of catalyst preparation method. Appl Catal A 329:22–29

    Article  Google Scholar 

  • Li Y, Chen J, Chang L, Qin Y (1998) The doping effect of copper on the catalytic growth of carbon fibers for methane over a Ni/Al2O3 catalyst prepared from Feitknecht compound precursor. J Catal 178:76–83

    Article  CAS  Google Scholar 

  • Lilly MB, Brezovich IA, Atkinson WJ (1985) Hyperthermia induction with thermally self-regulated ferromagnetic implants. Radiology 154:243–244

    CAS  Google Scholar 

  • Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams. Materials Park, Ohio

  • Mattei G, de Julián Fernández C, Mazzoldi P, Sada C, De G, Battaglin G, Sangregorio C, Gatteschi D (2002) Synthesis, structure and magnetic properties of Co, Ni and Co–Ni alloy nanocluster doped SiO2 films by sol-gel processing. Chem Mater 14:3440–3447

    Article  CAS  Google Scholar 

  • Medda SK, De G (2009) Inorganic-organic nanocomposite based hard coatings on plastics using in situ generated nano-SiO2 bonded with ≡Si–O–Si–PEO hybrid network. Ind Eng Chem Res 48:4326–4333

    Article  CAS  Google Scholar 

  • Medda SK, De S, De G (2005) Synthesis of Au nanoparticle doped SiO2–TiO2 films: tuning of Au surface plasmon band position through controlling the refractive index. J Mater Chem 15:3278–3284

    Article  CAS  Google Scholar 

  • Pal S, De G (2005) A new approach for the synthesis of Au–Ag alloy nanoparticle incorporated SiO2 films. Chem Mater 17:6161–6166

    Article  CAS  Google Scholar 

  • Pal S, De G (2007) Oriented Au–Cu nanoalloy particle incorporated SiO2 films using a new layer by layer deposition technique. J Mater Chem 17:493–498

    Article  CAS  Google Scholar 

  • Pal S, De G (2009) Reversible transformations of silver oxide and metallic silver nanoparticles inside SiO2 films. Mater Res Bull 44:355–359

    Article  CAS  Google Scholar 

  • Qiwu W, Jianlong Y, Jingfang R, Minming H, Chunhu Y (1990) Structure and catalytic properties of Cu–Ni bimetallic catalysts for hydrogenation. Catal Lett 4:63–74

    Article  Google Scholar 

  • Rao L, Reddy NK, Coulombe S, Meunier J, Munz RJ (2007) Carbon nanotubes as nanoparticles collector. J Nanoparticle Res 9:689–695

    Article  CAS  Google Scholar 

  • Zhang Y, Huang W, Habas SE, Kuhn JN, Grass ME, Yamada Y, Yang P, Somorjai GA (2008) Near-monodisperse Ni–Cu bimetallic nanocrystals of variable composition: controlled synthesis and catalytic activity for H2 generation. J Phys Chem C 112:12092–12095

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors thank DST, Govt. of India for financial support under the National Nano Mission program. Necessary permission to publish this paper has been obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goutam De.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pramanik, S., Pal, S., Bysakh, S. et al. Cu x Ni1−x alloy nanoparticles embedded SiO2 films: synthesis and structure. J Nanopart Res 13, 321–329 (2011). https://doi.org/10.1007/s11051-010-0033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0033-0

Keywords

Navigation