Skip to main content
Log in

Carbon nanotubes as nanoparticles collector

  • Brief Communication
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This communication reports on a new method for the collection of nanoparticles using carbon nanotubes (CNT) as collecting surfaces, by which the problem of agglomeration of nanoparticles can be circumvented. CNT (10–50 nm in diameter, 1–10 μm in length) were grown by thermal CVD at 923 K in a 7 v/v% C2H2 in N2 mixture on electroless nickel-plated copper transmission electron microscopy (TEM) grids and Monel coupons. These samples were then placed downstream of an arc plasma reactor to collect individual copper nanoparticles (5–30 nm in diameter). It was observed that the Cu nanoparticles preferentially adhere onto CNT and that the macro-particles (diameter >1 μm), a usual co-product obtained with metal nanoparticles in the arc plasma synthesis, are not collected. Cu–Ni nanoparticles, a catalyst for CNT growth, were deposited on CNT to grow multibranched CNT. CNT-embedded thin films were produced by re-melting the deposited nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • An K.H., W.S. Kim, Y.S. Park, Y.C. Choi, S.M. Lee, D.C. Chung et al., 2001. Supercapacitors using single-walled carbon nanotube electrodes. Adv. Mater. 13(7), 497–500.

    Article  CAS  Google Scholar 

  • Bachtold A., P. Hadley, T. Nakanishi & C. Dekker, 2001. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320

    Article  CAS  Google Scholar 

  • Barisci J.N., G.G. Wallace & R.H. Baughman, 2000. Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488(2), 92–98

    Article  CAS  Google Scholar 

  • Chen J. & G. Lu 2006. Controlled decoration of carbon nanotubes with nanoparticles. Nanotechnology 17, 2891–2894

    Article  CAS  Google Scholar 

  • Claye A.S., J.E. Fischer, C.B. Huffman, A.G. Rinzler & R.E. Smalley, 2000. Solid-State electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 147(8), 2845–2852

    Article  CAS  Google Scholar 

  • Frackowiak E., S. Gautier, H. Gaucher, S. Bonnamy & F. Beguin, 1999. Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 37(1), 61–69

    Article  CAS  Google Scholar 

  • Guo D.J. & H.L. Li, 2004. High dispersion and electro catalytic properties of Pt nanoparticles on SWNT bundles. J. Electroanal. Chem. 573(1), 197–202

    Article  CAS  Google Scholar 

  • Kong J., N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng & K.Cho et al., 2000. Nanotube molecular wires as chemical sensors. Science 287, 622–625

    Article  CAS  Google Scholar 

  • Male K. B., S. Hrapovic, Y. Liu, D. Wang & J. H.T. Luong 2004. Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal. Chim. Acta 516, 35–41

    Article  CAS  Google Scholar 

  • Malyavantham Gokul, D. T. O’Brien, M. F. Becker, J. W. Keto & D. Kovar 2004. Au–Cu nanoparticles produced by laser ablation of mixtures of Au and Cu microparticles. J. Nanoparticle Res. 6, 661–664

    Article  Google Scholar 

  • Odom T.W., J.L. Huang, P. Kim & C.M. Lieber, 2000.Structure and electronic properties of carbon nanotubes. J. Phys. Chem. B 104(13), 2794–2809

    Article  CAS  Google Scholar 

  • Parthasaradhy N.V., 1989. Practical Electroplating Handbook. Englewood Cliffs, N.J. Prentice Hall

    Google Scholar 

  • Reddy N.K., J.L. Meunier & S. Coulombe 2006. Growth of carbon nanotubes directly on a nickel surface by thermal CVD. Materials Letters. In press, corrected proof.

  • Saltiel C. & H. Giesche, 2000. Needs and opportunities for nanoparticle characterization. J. Nanoparticle Res. 2, 325–326

    Article  Google Scholar 

  • Shi J., Z. Wang & H. Li, 2006. Selfassembly of gold nanoparticles onto the surface of multiwall carbon nanotubes functionalized with mercaptobenzene moieties. J. Nanoparticle Res.

  • Szente R.N., R.J.Munz & M.G. Drouet, 1992. The effect of low concentrations of a polyatomic gas in argon on erosion on copper cathodes in a magnetically rotated arc. Plasma Chem. Plasma Proc. 7, 349–364

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC), the Fonds québécois de la recherche sur la nature et les technologies (FQRNT), and McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Coulombe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, L., Reddy, N.K., Coulombe, S. et al. Carbon nanotubes as nanoparticles collector. J Nanopart Res 9, 689–695 (2007). https://doi.org/10.1007/s11051-006-9175-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-006-9175-5

Keywords

Navigation