Skip to main content
Log in

Chemical vapor synthesis of fluorine-doped SnO2 (FTO) nanoparticles

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The synthesis and properties of nanocrystalline SnO2 particles and the effects of doping with fluorine are reported in this work. Simultaneous thermal decomposition of tetramethyltin and difluoromethane in the chemical vapor synthesis process was employed. The nanoparticles were analyzed with respect to their structure using X-ray diffraction followed by Rietveld refinement, transmission electron microscopy, nitrogen adsorption, X-ray photoelectron spectroscopy, and Fourier-transformed infrared spectroscopy. Based on the experimental results, a point defect model is proposed, which is supported by density functional theory calculations. At low fluorine concentrations, fluorine substitutes oxygen on a lattice site, while fluorine is located interstitially at high concentrations. The formation of an associated fluorine substitutional–interstitial pair is observed instead of isolated interstitial fluorine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arefi-Khonsari F, Bauduin N, Donsanti F, Amouroux J (2003) Deposition of transparent conductive tin oxide thin films doped with fluorine by PACVD. Thin Solid Films 427:208–214

    Article  CAS  ADS  Google Scholar 

  • Ayyub P, Palkar VR, Chattopadhyay S, Multani M (1995) Effect of crystal size reduction on lattice symmetry and cooperative properties. Phys Rev B 51:6135–6138

    Article  CAS  ADS  Google Scholar 

  • Bae JW, Lee SW, Yeom GY (2007) Doped-fluorine on electrical and optical properties of tin oxide films grown by ozone-assisted thermal CVD. J Electrochem Soc 154:D34–D37

    Article  CAS  Google Scholar 

  • Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  ADS  Google Scholar 

  • Brehm JU, Winterer M, Hahn H (2006) Synthesis and local structure of doped nanocrystalline zinc oxides. J Appl Phys 100:064311

    Article  ADS  CAS  Google Scholar 

  • Bruneaux J, Cachet H, Fromment M, Messad A (1991) Correlation between structural and electrical-properties of sprayed tin oxide-films with and without fluorine doping. Thin Solid Films 197:129–142

    Article  CAS  ADS  Google Scholar 

  • Canestraro CD, Oliveira MM, Valaski R, da Silva MVS, David DGF, Pepe I, da Silva AF, Roman LS, Persson C (2008) Strong inter-conduction-band absorption in heavily fluorine doped tin oxide. Appl Surf Sci 255:1874–1879

    Article  CAS  ADS  Google Scholar 

  • Canestraro CD, Roman LS, Persson C (2009) Polarization dependence of the optical response in SnO2 and the effects from heavily F doping. Thin Solid Films 517:6301–6304

    Article  CAS  Google Scholar 

  • Ceperley DM, Alder B-J (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569

    Article  CAS  ADS  Google Scholar 

  • Chopra KL, Major S, Pandya DK (1983) Transparent conductors—a status review. Thin Solid Films 102:1–46

    Article  CAS  ADS  Google Scholar 

  • Dawar AL, Joshi JC (1984) Semiconducting transparent thin films: their properties and applications. J Mater Sci 19:1–23

    Article  CAS  ADS  Google Scholar 

  • Ensling D, Thißen A, Gassenbauer Y, Klein A, Jaegermann W (2005) In situ preparation and analysis of functional oxides. Adv Eng Mater 7:945–949

    Article  CAS  Google Scholar 

  • Erhart P, Klein A, Albe K (2005) Phys Rev B 72:085213

    Article  ADS  CAS  Google Scholar 

  • Esteves MC, Gouvêa D, Sumodjo PTA (2004) Effect of fluorine doping on the properties of tin dioxide based powders prepared via Pechini’s method. Appl Surf Sci 229:24–29

    Article  CAS  ADS  Google Scholar 

  • Fantini M, Torriani I (1986) The compositional and structural properties of sprayed SnO2:F thin films. Thin Solid Films 138:255–265

    Article  CAS  ADS  Google Scholar 

  • Ferrón J, Arce R (1991) Anomalous incorporation of fluorine in tin oxide films produced with the pyrosol method. Thin Solid Films 204:405–411

    Article  ADS  Google Scholar 

  • Gamard A, Jousseaume B, Toupance T, Campet G (1999) New fluorinated stannic compounds as precursors of F-doped SnO2 materials prepared by the sol–gel route. Inorg Chem 38:4671–4679

    Article  CAS  PubMed  Google Scholar 

  • Hall DL, Wang AA, Joy KT, Miller TA, Woolridge MS (2004) Combustion synthesis and characterization of nanocrystalline tin and tin oxide (SnOx, x = 0–2) particles. J Am Ceram Soc 87:2033–2041

    Article  CAS  Google Scholar 

  • Han C-H, Han S-D, Gwak J, Khatkar SP (2007) Synthesis of indium tin oxide (ITO) and fluorine-doped tin oxide (FTO) nano-powder by sol–gel combustion hybrid method. Mater Lett 61:1701–1703

    Article  CAS  Google Scholar 

  • Hartnagel HL, Dawar AL, Jain AK, Jagadish C (1995) Semiconducting transparent thin films. Institute of Physics Publishing, Bristol, UK

    Google Scholar 

  • Jin W, Lee I-K, Kompch A, Dörfler U, Winterer M (2007) Chemical vapor synthesis and characterization of chromium doped zinc oxide nanoparticles. J Eur Ceram Soc 27:4333–4337

    Article  CAS  Google Scholar 

  • Jung D-W, Park D-W (2009) Synthesis of nano-sized antimony-doped tin oxide (ATO) particles using a DC arc plasma jet. Appl Surf Sci 255:5409–5413

    Article  CAS  ADS  Google Scholar 

  • Kim H, Auyeung RCY, Pique A (2008) Transparent conducting F-doped SnO2 thin films grown by pulsed laser deposition. Thin Solid Films 516:5052–5056

    Article  CAS  ADS  Google Scholar 

  • Kresse G, Furthmüller J (1996a) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169–11186

    Article  CAS  ADS  Google Scholar 

  • Kresse G, Furthmüller J (1996b) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  • Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59:1758–1775

    Article  CAS  ADS  Google Scholar 

  • Leenen MAM, Arning V, Thiem H, Steiger J, Anselm R (2009) Printable electronics: flexibility for the future. Phys Status Solidi A 206:588–597

    Article  CAS  ADS  Google Scholar 

  • Martel A, Caballero-Briones F, Fandino J, Castro-Rodriguez R, Bartolo-Perez P, Zapato-Navarro A, Zapato-Torres M, Pena JL (1999) Discharge diagnosis and controlled deposition of SnOx: F films by DC-reactive sputtering from a metallic target. Surf Coat Technol 122:136–142

    Article  CAS  Google Scholar 

  • Maruyama T, Akagi H (1996) Fluorine-doped tin dioxide thin films prepared by radio-frequency magnetron sputtering. J Electrochem Soc 143:283–287

    Article  CAS  Google Scholar 

  • Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  MathSciNet  ADS  Google Scholar 

  • Moulder JF, Stickle WF, Sobol PE, Bomben KD (1995) Handbook of X-ray photoelectron spectroscopy. Physical Electronics Inc., Eden Prairie, MN

  • Patil PS (1999) Versatility of chemical spray pyrolysis technique. Mater Chem Phys 59:185–198

    Article  CAS  MathSciNet  Google Scholar 

  • Proscia J, Gordon RG (1992) Properties of fluorite-doped tin oxide-films produced by atmospheric pressure chemical vapour deposition from tetremethyltin, bromotrifluoromethane and oxygen. Thin Solid Films 214:175–187

    Article  CAS  ADS  Google Scholar 

  • Saxena AK, Thangaraj R, Singh SP, Agnihotri (1985) Characterization of fluorine-doped SnO2 films prepared by chemical vapour deposition. Thin Solid Films 131:121–130

    Article  CAS  ADS  Google Scholar 

  • Schallehn M, Winterer M, Weirich TE, Keiderling U, Hahn H (2003) In situ preparation of polymer-coated alumina nanopowders by chemical vapor synthesis. Chem Vap Depos 9:40–44

    Article  CAS  Google Scholar 

  • Srdic VV, Winterer M, Hahn H (2000) Sintering behavior of nanocrystalline zirconia doped with alumina prepared by chemical vapor synthesis. J Am Ceram Soc 83:1853–1860

    Article  CAS  Google Scholar 

  • Suffner J, Schechner G, Sieger H, Hahn H (2007) In situ coating of silica nanoparticles with acrylate-based polymers. Chem Vap Depos 13:459–464

    Article  CAS  Google Scholar 

  • Szczuko D, Werner D, Oswald S, Behr G, Wetzig K (2001) XPS investigations of surface segregation of doping elements in SnO2. Appl Surf Sci 179:301–306

    Article  CAS  ADS  Google Scholar 

  • Thangaraju B (2002) Structural and electrical studies on highly conducting spray deposited fluorine and antimony doped SnO2 thin films from SnCl2 precursor. Thin Solid Films 402:71–78

    Article  CAS  ADS  Google Scholar 

  • Winterer M (2002) Nanocrystalline ceramics. Springer, Berlin, Germany

    Google Scholar 

  • Zhang J, Gao L (2004) Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J Solid State Chem 177:1425–1430

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the help with the photoelectron spectra measured by Erich Golusda (Surface Science Division, Technische Universität Darmstadt). Helpful discussions with Christoph Körber and Andreas Klein (Surface Science Division, Technische Universität Darmstadt) are gratefully acknowledged. The authors thank the State of Hesse for the financial support for a major equipment grant. Financial support by the Deutsche Forschungsgemeinschaft (DFG) through individual grants and through the Center for Functional Nanostructures (CFN) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Suffner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suffner, J., Ágoston, P., Kling, J. et al. Chemical vapor synthesis of fluorine-doped SnO2 (FTO) nanoparticles. J Nanopart Res 12, 2579–2588 (2010). https://doi.org/10.1007/s11051-009-9827-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9827-3

Keywords

Navigation