Skip to main content
Log in

Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Superparamagnetic iron oxide nanoparticles are used in diverse applications, including optical magnetic recording, catalysts, gas sensors, targeted drug delivery, magnetic resonance imaging, and hyperthermic malignant cell therapy. Combustion synthesis of nanoparticles has significant advantages, including improved nanoparticle property control and commercial production rate capability with minimal post-processing. In the current study, superparamagnetic iron oxide nanoparticles were produced by flame synthesis using a coflow flame. The effect of flame configuration (diffusion and inverse diffusion), flame temperature, and additive loading on the final iron oxide nanoparticle morphology, elemental composition, and particle size were analyzed by transmission electron microscopy (TEM), high-resolution TEM (HR-TEM), energy dispersive spectroscopy (EDS), and Raman spectroscopy. The synthesized nanoparticles were primarily composed of two well known forms of iron oxide, namely hematite αFe2O3 and magnetite Fe3O4. We found that the synthesized nanoparticles were smaller (6–12 nm) for an inverse diffusion flame as compared to a diffusion flame configuration (50–60 nm) when CH4, O2, Ar, and N2 gas flow rates were kept constant. In order to investigate the effect of flame temperature, CH4, O2, Ar gas flow rates were kept constant, and N2 gas was added as a coolant to the system. TEM analysis of iron oxide nanoparticles synthesized using an inverse diffusion flame configuration with N2 cooling demonstrated that particles no larger than 50–60 nm in diameter can be grown, indicating that nanoparticles did not coalesce in the cooler flame. Raman spectroscopy showed that these nanoparticles were primarily magnetite, as opposed to the primarily hematite nanoparticles produced in the hot flame configuration. In order to understand the effect of additive loading on iron oxide nanoparticle morphology, an Ar stream carrying titanium-tetra-isopropoxide (TTIP) was flowed through the outer annulus along with the CH4 in the inverse diffusion flame configuration. When particles were synthesized in the presence of the TTIP additive, larger monodispersed individual particles (50–90 nm) were synthesized as observed by TEM. In this article, we show that iron oxide nanoparticles of varied morphology, composition, and size can be synthesized and controlled by varying flame configuration, flame temperature, and additive loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akhtar MK, Pratsinis SE, Mastrangelo SVR (1992) Dopants in vapor-phase synthesis of titania powders. J Am Ceram Soc 75:3408–3416

    Article  CAS  Google Scholar 

  • Akhtar MK, Pratsinis SE, Mastrangelo SVR (1994) Vapor-phase synthesis of Al-doped titania powders. J Mater Res 9:1241–1249

    Article  CAS  ADS  Google Scholar 

  • Awschalom DD, Divincenzo DP (1995) Complex dynamics of mesoscopic magnets. Phys Today 48:43–48

    Article  CAS  Google Scholar 

  • Babincova M, Leszczynska D, Sourivong P, Babinec P (2000) Selective treatment of neoplastic cells using ferritin-mediated electromagnetic hyperthermia. Med Hypotheses 54:177–179

    Article  CAS  PubMed  Google Scholar 

  • Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. J Drug Target 6:167–174

    Article  CAS  PubMed  Google Scholar 

  • Brenner JR, Harkness JBL, Knickelbein MB, Krumdick GK, Marshall CL (1997) Microwave plasma synthesis of carbon-supported ultrafine metal particles. Nanostruct Mater 8:1–17

    Article  CAS  Google Scholar 

  • Choi CJ, Dong XL, Kim BK (2001) Characterization of Fe and Co nanoparticles synthesized by chemical vapor condensation. Scripta Mater 44:2225–2229

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertman U (1996) The iron oxides: structure, properties, reactions, occurrences and uses. VCH, New York

    Google Scholar 

  • deFaria DLA, Silva SV, deOliveira MT (1997) Raman microspectroscopy of some iron oxides and oxyhydroxides. J Raman Spectrosc 28:873–878

    Article  CAS  ADS  Google Scholar 

  • Deng Y, Wang L, Yang W, Fu S, Elaissari A (2003) Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J Magn Magn Mater 257:69–78

    Article  CAS  ADS  Google Scholar 

  • Dobbins RA, Megaridis CM (1987) Morphology of flame-generated soot as determined by thermophoretic sampling. Langmuir 3:254–259

    Article  CAS  Google Scholar 

  • Dobson J (2006) Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene Ther 13:283–287

    Article  CAS  PubMed  MathSciNet  Google Scholar 

  • Fotou GP, Scott SJ, Pratsinis SE (1995) The role of ferrocene in flame synthesis of silica. Combust Flame 101:529–538

    Article  CAS  Google Scholar 

  • Gheith MA (1952) Differential thermal analysis of certain iron oxides and their hydrates. Am J Sci 250:677–695

    CAS  Google Scholar 

  • Gruner JW (1926) Magnetite-martite-hematite. Econ Geol 21:325–393

    Google Scholar 

  • Gupta AK, Curtis ASG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater M 15:493–496

    Article  CAS  Google Scholar 

  • Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  PubMed  Google Scholar 

  • Halavaara J, Tervahartiala P, Isoniemi H, Hockerstedt K (2002) Efficacy of sequential use of superparamagnetic iron oxide and gadolinium in liver MR imaging. Acta Radiol 43:180–185

    Article  CAS  PubMed  Google Scholar 

  • Hilger I, Andra W, Hergt R, Hiergeist R, Schubert H, Kaiser WA (2001) Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. Radiology 218:570–575

    CAS  PubMed  Google Scholar 

  • Janzen C, Roth P (2001) Formation and characteristics of Fe2O3 nano-particles in doped low pressure H-2/O-2/Ar flames. Combust Flame 125:1150–1161

    Article  CAS  Google Scholar 

  • Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R (1993) Inductive heating of ferrimagnetic particles and magnetic fluids—physical evaluation of their potential for hyperthermia. Int J Hyperther 9:51–68

    Article  CAS  Google Scholar 

  • Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Synthesis and consolidation of iron nanopowders. Nanostruct Mater 10:1379–1392

    Article  CAS  Google Scholar 

  • Kammler HK, Madler L, Pratsinis SE (2001) Flame synthesis of nanoparticles. Chem Eng Technol 24:583–596

    Article  CAS  Google Scholar 

  • Khalafalla SE, Reimers GW (1980) Preparation of dilution-stable aqueous magnetic fluids. IEEE T Magn 16:178–183

    Article  ADS  Google Scholar 

  • Kim DK, Zhang Y, Voit W, Rao KV, Muhammed M (2001) Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J Magn Magn Mater 225:30–36

    Article  CAS  ADS  Google Scholar 

  • Kung HH, Ko EI (1996) Preparation of oxide catalysts and catalyst supports—A review of recent advances. Chem Eng J 64:203–214

    CAS  Google Scholar 

  • Lee GW, Jurng J, Hwang J (2004) Formation of Ni-catalyzed multiwalled carbon nanotubes and nanofibers on a substrate using an ethylene inverse diffusion flame. Combust Flame 139:167–175

    Article  CAS  Google Scholar 

  • Lepp H (1957) Stages in oxidation of magnetite. Am Mineral 42:679–681

    CAS  Google Scholar 

  • Li SZ, Hong YC, Uhm HS, Li ZK (2004) Synthesis of nanocrystalline iron oxide particles by microwave plasma jet at atmospheric pressure. Jpn J Appl Phys 1(43):7714–7717

    Article  ADS  Google Scholar 

  • Liu XY, Ding J, Wang J (1999) An alpha-Fe2O3 powder of nanosized particles via precursor dispersion. J Mater Res 14:3355–3362

    Article  CAS  ADS  Google Scholar 

  • Martinez B, Roig A, Molins E, Gonzalez-Carreno T, Serna CJ (1998) Magnetic characterization of gamma-Fe2O3 nanoparticles fabricated by aerosol pyrolysis. J Appl Phys 83:3256–3262

    Article  CAS  ADS  Google Scholar 

  • Merchan-Merchan W, Saveliev AV, Taylor AM (2008) High rate flame synthesis of highly crystalline iron oxide nanorods. Nanotechnology 19:125605

    Article  ADS  Google Scholar 

  • Mitsumori M, Hiraoka M, Shibata T, Okuno Y, Nagata Y, Nishimura Y, Abe M, Hasegawa M, Nagae H, Ebisawa Y (1996) Targeted hyperthermia using dextran magnetite complex: a new treatment modality for liver tumors. Hepato-Gastroenterol 43:1431–1437

    CAS  Google Scholar 

  • Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energ Combust 24:197–219

    Article  CAS  Google Scholar 

  • Pratsinis SE, Zhu WH, Vemury S (1996) The role of gas mixing in flame synthesis of titania powders. Powder Technol 86:87–93

    Article  CAS  Google Scholar 

  • Przepiera K, Przepiera A (2001) Kinetics of thermal transformations of precipitated magnetite and goethite. J Therm Anal Calorim 65:497–503

    Article  CAS  Google Scholar 

  • Santra S, Bagwe RP, Dutta D, Stanley JT, Walter GA, Tan W, Moudgil BM, Mericle RA (2005) Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal bioimaging applications. Adv Mater 17:2165–2169

    Article  CAS  Google Scholar 

  • Sasaki T, Terauchi S, Koshizaki N, Umehara H (1998) The preparation of iron complex oxide nanoparticles by pulsed-laser ablation. Appl Surf Sci 129:398–402

    Article  Google Scholar 

  • Scherer F, Anton M, Schillinger U, Henkel J, Bergemann C, Kruger A, Gansbacher B, Plank C (2002) Magnetofection: enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 9:102–109

    Article  CAS  PubMed  Google Scholar 

  • Schmidt ER, Vermaas FHS (1955) Differential thermal analysis and cell dimensions of some natural magnetites. Ann Mineral 40:422–431

    CAS  Google Scholar 

  • Siegel RW (1993) Synthesis and properties of nanophase materials. Mat Sci Eng a Struct 168:189–197

    Article  Google Scholar 

  • Sjogren CE, Brileysaebo K, Hanson M, Johansson C (1994) Magnetic characterization of iron-oxides for Magnetic-Resonance-Imaging. Magnet Reson Med 31:268–272

    Article  CAS  Google Scholar 

  • Stamatakis P, Natalie CA, Palmer BR, Yuill WA (1991) Research needs in aerosol processing. Aerosol Sci Tech 14:316–321

    Article  CAS  Google Scholar 

  • Ullmann M, Friedlander SK, Schmidt-Ott A (2002) Nanoparticle formation by laser ablation. J Nanopart Res 4:499–509

    Article  CAS  Google Scholar 

  • Ulrich GD (1971) Theory of particle formation and growth in oxide synthesis flames. Combust Sci Technol 4:45–57

    Article  ADS  Google Scholar 

  • Vemury S, Pratsinis SE (1995) Dopants in flame synthesis of titania. J Am Ceram Soc 78:2984–2992

    Article  CAS  Google Scholar 

  • Wooldridge MS (1998) Gas-phase combustion synthesis of particles. Prog Energy Combust 24:63–87

    Article  CAS  Google Scholar 

  • Wu MK, Windeler RS, Steiner CKR, Bors T, Friedlander SK (1993) Controlled synthesis of nanosized particles by aerosol processes. Aerosol Sci Tech 19:527–548

    Article  CAS  Google Scholar 

  • Xing YC, Kole TP, Katz JL (2003) Shape-controlled synthesis of iron oxide nanoparticles. J Mater Sci Lett 22:787–790

    Article  CAS  Google Scholar 

  • Xu F, Liu X, Tse SD, Cosandey F, Kear BH (2007) Flame synthesis of zinc oxide nanowires. Chem Phys Lett 449:175–181

    Article  CAS  ADS  Google Scholar 

  • Yang J, Mei S, Ferreira JMF, Norby P, Quaresma S (2005) Fabrication of rutile rod-like particle by hydrothermal method: an insight into HNO3 peptization. J Colloid Interface Sci 283:102–106

    Article  CAS  PubMed  Google Scholar 

  • Zachariah MR, Huzarewicz S (1991) Aerosol processing of Ybacuo superconductors in a flame reactor. J Mater Res 6:264–269

    Article  CAS  ADS  Google Scholar 

  • Zachariah MR, Aquino MI, Shull RD, Steel EB (1995) Formation of superparamagnetic nanocomposites from vapor-phase condensation in a flame. Nanostruct Mater 5:383–392

    Article  CAS  Google Scholar 

  • Zhang ZJ, Wei BQ, Ajayan PM (2001) Self-assembled patterns of iron oxide nanoparticles by hydrothermal chemical-vapor deposition. Appl Phys Lett 79:4207–4209

    Article  CAS  ADS  Google Scholar 

  • Ziolo RF, Giannelis EP, Weinstein BA, Ohoro MP, Ganguly BN, Mehrotra V, Russell MW, Huffman DR (1992) Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3—A new optically transparent magnetic material. Science 257:219–223

    Article  CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgments

We are sincerely grateful to Centralized Research Facilities at Drexel’s College of Engineering and W. M. Keck Electron Microscopy Facility at University of Delaware for providing access to SEM, TEM, and Raman Microspectrometer. We thank Dr Tiffany Miller for her help with the TEM and for her guidance. This study is supported by Mechanical Engineering and Mechanics Department of Drexel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Morss Clyne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buyukhatipoglu, K., Morss Clyne, A. Controlled flame synthesis of αFe2O3 and Fe3O4 nanoparticles: effect of flame configuration, flame temperature, and additive loading. J Nanopart Res 12, 1495–1508 (2010). https://doi.org/10.1007/s11051-009-9724-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9724-9

Keywords

Navigation