Skip to main content
Log in

Economic assessment of single-walled carbon nanotube processes

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The carbon nanotube market is steadily growing and projected to reach $1.9 billion by 2010. This study examines the economics of manufacturing single-walled carbon nanotubes (SWNT) using process-based cost models developed for arc, CVD, and HiPco processes. Using assumed input parameters, manufacturing costs are calculated for 1 g SWNT for arc, CVD, and HiPco, totaling $1,906, $1,706, and $485, respectively. For each SWNT process, the synthesis and filtration steps showed the highest costs, with direct labor as a primary cost driver. Reductions in production costs are calculated for increased working hours per day and for increased synthesis reaction yield (SRY) in each process. The process-based cost models offer a means for exploring opportunities for cost reductions, and provide a structured system for comparisons among alternative SWNT manufacturing processes. Further, the models can be used to comprehensively evaluate additional scenarios on the economics of environmental, health, and safety best manufacturing practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baughman RH, Zakhidov AA et al (2002) Carbon nanotubes––the route toward applications. Science 297(5582):787–792. doi:10.1126/science.1060928

    Article  CAS  PubMed  ADS  Google Scholar 

  • Berber S, Kwon Y-K et al (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613. doi:10.1103/PhysRevLett.84.4613

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bronikowski MJ, Willis PA et al (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study, AVS. J Vac Sci Technol A 19(4):1800–1805. doi:10.1116/1.1380721

    Google Scholar 

  • Busch J (1994) Cost modeling as a technical management tool. Res Technol Manag 37(6):50–56

    MathSciNet  Google Scholar 

  • Chiango DA, Isaacs JA et al (2000) Production of steel powder by rotating electrode processes: economic analyses. Int J Powder Metall 36(4):49–56

    CAS  Google Scholar 

  • Clark JP, Field FR et al (1997) Techno-economic issues in materials selection. ASM Handb Mater Sel Des 20:255–265

    Google Scholar 

  • Daenen M, de Fouw RD et al (2003) The wondrous world of carbon nanotubes. Eindhoven University of Technology, Eindhoven

  • EIA (2007) Energy Information Administration: Electricity InfoCard 2006. http://www.eia.doe.gov/bookshelf/brochures/electricityinfocard/elecinfocard2006/elecinfocard.html

  • Flahaut E, Peigney A et al (2000) Synthesis of single-walled carbon nanotube–Co–MgO composite powders and extraction of the nanotubes. J Mater Chem 10(2):249–252. doi:10.1039/a908593i

    Article  CAS  Google Scholar 

  • Global Industry Analysts I (2007). Carbon nanotubes: a Global strategic business report IV-1-IV-199

  • Hamada N, Sawada S-i et al (1992) New one-dimensional conductor: graphite microtubules. Phys Rev Lett 68(10):1579–1581. doi:10.1103/PhysRevLett.68.1579

    Article  CAS  PubMed  ADS  Google Scholar 

  • Harris PJF (1999) Carbon nanotubes and related structures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Healy M (2006) Environmental and economic comparison of single-wall carbon nanotube production alternatives. MS thesis, Mechanical and Industrial Engineering, Northeastern University, Boston, MA

  • Healy ML, Isaacs JA et al (2006) Economic and environmental tradeoffs of SWNT production. NSTI-Nanotech 2006, Boston, MA

  • Healy ML, Dahlben LJ et al (2008) Environmental assessment of single-walled carbon nanotube processes. J Ind Ecol 12(3):376–393. doi:10.1111/j.1530-9290.2008.00058.x

    Article  CAS  Google Scholar 

  • Kirchain R (2001) Cost modeling of materials and manufacturing processes. Encyclopedia of material science and engineering. E. S. Ltd, pp 1718–1727

  • Kociak M, Kasumov A et al (2002) Intrinsic superconductivity in ropes of carbon nanotubes. American Institute of Physics, New York, pp 237–241

  • Liu BC, Lyu SC et al (2004) Single-walled carbon nanotubes produced by catalytic chemical vapor deposition of acetylene over Fe–Mo/MgO catalyst. Chem Phys Lett 383(1–2):104–108. doi:10.1016/j.cplett.2003.10.134

    Article  CAS  ADS  Google Scholar 

  • Lux Research (2006) The nanotech report, 4th edn. Lux Research Inc., New York, NY

  • Nikolaev P, Bronikowski MJ et al (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313(1–2):91–97. doi:10.1016/S0009-2614(99)01029-5

    Article  CAS  ADS  Google Scholar 

  • NNI (2008) FY 2009 Budget and Highlights. National Nanotechnology Initiative

  • Ok ZD, Benneyan JC et al (2008) Risk analysis modeling of production costs and occupational health exposure of single-wall carbon nanotube manufacturing. J Ind Ecol 12(3):411–434. doi:10.1111/j.1530-9290.2008.00030.x

    Article  CAS  Google Scholar 

  • Seo JW, Couteau E et al (2003) Synthesis and manipulation of carbon nanotubes. N J Phys 5(120):1–22

    CAS  Google Scholar 

  • Tanaka K, Yamabe T et al (1999) The science and technology of carbon nanotubes. Elsevier, Tokyo

    Google Scholar 

  • Tang S, Zhong Z et al (2001) Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chem Phys Lett 350(1–2):19–26. doi:10.1016/S0009-2614(01)01183-6

    Article  CAS  ADS  Google Scholar 

  • Tanwani A (2005) Carbon nanotube production: an economic and environmental assessment of alternative technologies. MS Thesis, Mechanical and Industrial Engineering, Northeastern University, Boston, MA

  • Treacy MMJ, Ebbesen TW et al (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381(6584):678–680. doi:10.1038/381678a0

    Article  CAS  ADS  Google Scholar 

  • Zheng B, Li Y et al (2002) CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Appl Phys, A Mater Sci Process 74:345–348. doi:10.1007/s003390201275

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by National Science Foundation awards SES-0404114 and EEC-0425826 through the Nanoscale Science and Engineering Center for High-rate Nanomanufacturing at Northeastern University. The authors thank Zeynep Ok for discussions and her contributions to Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Isaacs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaacs, J.A., Tanwani, A., Healy, M.L. et al. Economic assessment of single-walled carbon nanotube processes. J Nanopart Res 12, 551–562 (2010). https://doi.org/10.1007/s11051-009-9673-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-009-9673-3

Keywords

Navigation