Skip to main content
Log in

An optimal low-temperature tartrate precursor method for the synthesis of monophasic nanosized ZnFe2O4

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this study, the synthesis of monophasic nanocrystalline zinc ferrite (ZnFe2O4) was achieved by controlling the thermal decomposition conditions of a zinc–iron tartrate precursor method. Differential thermal analysis/thermogravimetry (DTA/TG), X-ray diffraction (XRD), Fe2+ content analysis, transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) techniques were used to investigate the effect of heat treatment conditions on the calcined powders. The thermal decomposition of the precursor led to an intermediate phase formation of ZnO, Fe3O4, and γ-Fe2O3. It was found that the Fe3O4 → γ-Fe2O3 oxidation reaction is the key step in producing monophasic nanosized ZnFe2O4. The monophasic nanoparticles of ZnFe2O4 can be obtained when the precursor is heat treated under a low temperature (300–400 °C) and long residence time (4 h) process that can prompt the Fe3O4 oxidation and prevent the formation of α-Fe2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Braun PB (1952) A superstructure in spinels. Nature 170:1123

    Article  ADS  CAS  Google Scholar 

  • Can MM, Ozcan S, Firat T (2006) Magnetic behaviour of iron nanoparticles passivated by oxidation. Phys Status Solidi C: Conf 3:1271–1278

    Article  ADS  CAS  Google Scholar 

  • Druska P, Steinike U, Sepela’k V (1999) Surface structure of mechanically activated and of mechanosynthesized zinc ferrite. J Solid State Chem 146:13–21

    Article  ADS  CAS  Google Scholar 

  • Egger K, Feitknecht W (1962) Über die oxidation von Fe3O4 zu γ- und α-Fe2O3. Helv Chim Acta 45:2042–2057

    Article  CAS  Google Scholar 

  • Feitknecht W, Mannweiler U (1967) Der mechanismus der umwandlung vor γ- zu α-eisensesquioxid. Helv Chim Acta 50:570–581

    Article  CAS  Google Scholar 

  • Gajbhiye NS, Bhattacharya U, Darshane VS (1995) Thermal decomposition of zinc-iron citrate precursor. Thermochim Acta 264:219–230

    Article  CAS  Google Scholar 

  • Gillot B, Rousset A, Dupre G (1978) Influence of crystallite size on the oxidation kinetics of magnetite. J Solid State Chem 25:263–271

    Article  ADS  CAS  Google Scholar 

  • Gillot B, Benloucif RM, Rousset A (1981) A study of infrared absorption in the oxidation of zinc-substituted magnetites to defect phase γ and hematite. J Solid State Chem 39:329–336

    Article  ADS  CAS  Google Scholar 

  • Goss CJ (1988) Saturation magnetization, coercivity and lattice parameter changes in the system Fe3O4-γFe2O3, and their relationship to structure. Phys Chem Miner 16:164–171

    Article  ADS  CAS  Google Scholar 

  • Guaita FJ, Beltran H, Cordoncillo E, Beltran H, Escribano P, Gonzalez Calbet JM (1999) Influence of the precursors on the formation and the properties of ZnFe2O4. J Eur Ceram Soc 19:363–372

    Article  CAS  Google Scholar 

  • Hamdeh HH, Ho JC, Oliver SA, Willey RJ, Oliveri G, Busca G (1997) Magnetic properties of partially-inverted zinc ferrite aerogel powders. J Appl Phys 81:1851–1857

    Article  ADS  CAS  Google Scholar 

  • Hofmann M, Campbell SJ, Ehrhardt H, Feyerherm R (2004) The magnetic behaviour of nanostructured zinc ferrite. J Mater Sci 39:5057–5065

    Article  ADS  CAS  Google Scholar 

  • Jeyadevan B, Tohji K, Nakatsuka K (1994) Structure analysis of coprecipitated ZnFe2O4 by extended x-ray-absorption fine structure. J Appl Phys 76:6325–6327

    Article  ADS  CAS  Google Scholar 

  • Kamazawa K, Nakajima K, Kohn K, Tsunoda Y (2004) High magnetic field susceptibility and neutron scattering measurements for ZnFe2O4 single crystal. J Magn Magn Mater 272–276:e987–e988

    Article  Google Scholar 

  • Kester E, Perriat P, Gillot B, Tailhades Ph, Rousset A (1997) Correlation between oxidation states of transition metal ions and variation of coercivity in mixed-valence defect spinel ferrites. Solid State Ionics 101–103:457–463

    Google Scholar 

  • Kim W, Saito F (2001) Mechanochemical synthesis of zinc ferrite from zinc oxide and α-Fe2O3. Powder Technol 114:12–16

    Article  CAS  Google Scholar 

  • Laarj M, Kacim S, Gillot B (1996) Cationic distribution and oxidation mechanism of trivalent manganese ions in submicrometer MnxCoFe2-xO4 spinel ferrites. J Solid State Chem 125:67–74

    Article  ADS  CAS  Google Scholar 

  • Lakeman CDE, Payne DA (1994) Sol–gel processing of electrical and magnetic ceramics. Mater Chem Phys 38:305–324

    Article  CAS  Google Scholar 

  • Li Y, Zhao J, He X (2004) Influence of oxygen pressure on combustion synthesis of zinc ferrite powders. Mater Sci Eng B 106:196–201

    Article  Google Scholar 

  • Mohai I, Szépvölgyi J, Bertóti I et al (2001) Thermal plasma synthesis of zinc ferrite nanopowders. Solid State Ionics 141–142:163–168

    Article  Google Scholar 

  • Morrison SA, Cahill CL, Carpenter EE, Calvin S, Harris VG (2003) Preparation and characterization of MnZn-ferrite nanoparticles using reverse micelles. J Appl Phys 93:7489–7491

    Article  ADS  CAS  Google Scholar 

  • Moye V, Rane KS, Kamat Dalal VN (1990) Optimization of synthesis of nickel-zinc-ferrite from oxalates and oxalato hydrazinate precursors. J Mater Sci Mater Electron 1:212–218

    Article  CAS  Google Scholar 

  • Nikumbh AK, Aware AD, Sayanekar PL (1992) Electrical and magnetic properties of γ-Fe2O3 synthesized from ferrous tartarate one and half hydrate. J Magn Magn Mater 114:27–34

    Article  ADS  CAS  Google Scholar 

  • Perriat P, Gillot B (1993) A model for coupled diffusion reactions in Mn-Zn ferrites—generalization of the Ficks’s first law. Solid State Ionics 67:35–43

    Article  CAS  Google Scholar 

  • Rane KS, Verenkar VMS, Sawant PY (1999) Hydrazine method of synthesis of γ-Fe2O3 useful in ferrites preparation. Part IV—preparation and characterization of magnesium ferrite, MgFe2O4 from γ-Fe2O3 obtained from hydrazinated iron oxyhydroxides and iron (II) carboxylatohydrazinates. J Mater Sci Mater Electron 10:133–140

    Article  CAS  Google Scholar 

  • Shenoy SD, Joy PA, Anantharaman MR (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J Magn Magn Mater 269:217–226

    Article  ADS  CAS  Google Scholar 

  • Sidhu PS (1988) Transformation of trace element-substituted maghemite to hematite. Clays Clay Miner 36:31–38

    Article  CAS  Google Scholar 

  • Sidhu PS, Gilkes RJ, Posner AM (1977) Mechanism of the low temperature oxidation of synthetic magnetites. J Inorg Nucl Chem 39:1953–1958

    Article  CAS  Google Scholar 

  • Swaddle TW, Oltmann P (1980) Kinetics of the magnetite-maghemite-hematite transformation, with special reference to hydrothermal systems. Can J Chem 58:1763–1772

    Article  CAS  Google Scholar 

  • Tamaura Y, Kodama T, Itoh T (1990) High-vacancy-content magnetites and zinc-bearing ferrites from iron (III) tartrate in strongly alkaline solution. J Am Ceram Soc 73:2539–2542

    Article  CAS  Google Scholar 

  • Vogel I (1961) A textbook of quantitative inorganic analysis. Longmans, New York, p 308

    Google Scholar 

  • Willey RJ, Oliver SA, Oliveri G, Busca G (1993) Chemistry and structure of mixed magnesium ferric oxide aerogels. J Mater Res 8:1418–1427

    Article  ADS  CAS  Google Scholar 

  • Yang JM, Tsuo WJ, Yen FS (1999) Preparation of ultrafine nickel ferrite powders using mixed Ni and Fe tartrates. J Solid State Chem 145:50–57

    Article  ADS  CAS  Google Scholar 

  • Yang JM, Tsuo WJ, Yen FS (2001) Characterization of the thermal behavior of Li–Fe-tartrate gels (molar ratio Li/Fe<1/5). J Solid State Chem 160:100–107

    Article  ADS  CAS  Google Scholar 

  • Zhong W, Ding W, Zhang N, Hong J, Van Q, Du Y (1997) Key step in synthesis of ultrafine BaFe12O19 by sol-gel technique. J Magn Magn Mater 168:196–202

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by National Science Council of the Republic of China under Contract NSC 96-2622-E-244-001-CC3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J.M., Yang, K.L. An optimal low-temperature tartrate precursor method for the synthesis of monophasic nanosized ZnFe2O4 . J Nanopart Res 11, 1739–1750 (2009). https://doi.org/10.1007/s11051-008-9537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-008-9537-2

Keywords

Navigation