Skip to main content
Log in

A comparative study on the effects of different milling atmospheres and sintering temperatures on the synthesis and magnetic behavior of spinel single phase Ni0.64Zn0.36Fe2O4 nanocrystals

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Synthesis of Ni0.64Zn0.36Fe2O4 ferrite nanoparticles via mechanical alloying and subsequent heat treatment was investigated. The pure metal powder of Zn, Fe2O3 and NiO were ball milled in three different atmospheres including argon, oxygen and air. The X-ray diffraction results showed that after a long time of 30 h milling a desired ferrite was not produced, but heating the 30 h-activated powders in as low a temperature as 400 °C for 2 h led to the formation of Ni–Zn ferrite nanocrystals with some residual Fe2O3 phase. The particle size and lattice parameter of the Ni–Zn ferrite samples were strongly affected by the milling atmospheres. TEM results indicated that the average particle size of the milled samples in the argon atmosphere was the smallest and in the range of 5–67 nm. FT-IR spectra for the Ni–Zn ferrite samples showed two absorption bands associated with tetrahedral and octahedral sites around 600 and 400 cm−1, which depend on the milling atmosphere; their wave-number positions were different. The VSM results indicated that the magnetic properties i.g. Ms were not only affected by the milling atmosphere but also by the sintering temperature. Although increasing sintering temperature caused an increase of the Ms value in all the three atmosphere-milled samples, the milled-sintered samples in the argon atmosphere had the biggest Ms value about 96 emu/g after sintering at 1000 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Goldman, Modern ferrite technology, 2nd edn. (Springer, New York, 2006)

    Google Scholar 

  2. E.C. Snelling, Ferrites for inductors and transformers (Research Studies Press, Letchworth, 1983)

    Google Scholar 

  3. V.G. Harris, IEEE Trans. Magn. Magn. 48(3), 1075–1104 (2012)

    Article  Google Scholar 

  4. S. Bid, S.K. Pradhan, Mater. Chem. Phys. 84, 291–301 (2004)

    Article  Google Scholar 

  5. S. Deka, P.A. Joy, Mater. Chem. Phys. 100, 98–101 (2006)

    Article  Google Scholar 

  6. I.H. Gul, W. Ahmed, A. Maqsood, J. Magn. Magn. Mater. 320, 270–275 (2008)

    Article  Google Scholar 

  7. S.A. Morrison, C.L. Cahill, E.E. Carpenter, S. Calvin, R. Swaminath, M.E. McHenry, V.G. Harris, J. Appl. Phys. 95, 6392–6395 (2004)

    Article  Google Scholar 

  8. M.A. Gabal, R.M. El-Shishtawy, Y.M. Al Angari, J. Magn. Magn. Mater. 324, 2258–2264 (2012)

    Article  Google Scholar 

  9. V. Sepelak, M. Menzel, I. Bergmann, M. Wiebcke, F. Krumeich, K.D. Becker, J. Magn. Magn. Mater. 272–276, 1616–1618 (2004)

    Article  Google Scholar 

  10. B.P. Richards, A.C. Greenham, Br. J. Appl. Phys. (J. Phys. D) 2(1), 1297–1302 (1968)

    Article  Google Scholar 

  11. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, N. Sarami, J. Ceram. Int. 40, 5881–5887 (2014)

    Article  Google Scholar 

  12. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, S. Kanagesan, Mater. Sci. Pol. 32, 281–291 (2014)

    Article  Google Scholar 

  13. C.C. Koch, Nanostruct. Mater. 9(1–8), 13–22 (1997)

    Article  Google Scholar 

  14. C. Suryanarayana, Prog. Mater Sci. 46, 1–184 (2001)

    Article  Google Scholar 

  15. G.K. Williamson, W.H. Hall, Acta Metall. 1, 22–31 (1953)

    Article  Google Scholar 

  16. A. Hajalilou, M. Hashim, H. Mohamed Kamari, J. Mater. Sci.: Mater. Electron. 26(3), 1709–1718 (2014)

    Google Scholar 

  17. M.T. Masoudi, A. Saidi, M. Hashim, A. Hajalilou, Can. J. Phys. (2015). doi:10.1139/cjp-2015-0014

    Google Scholar 

  18. B.S. Murty, S. Ranganathan, Int. Mater. Rev. 43(3), 101–141 (1998)

    Article  Google Scholar 

  19. W.D. Kingery, H.K. Bowen, D.R. Uhlmann, Introduction to ceramics (Wiley, New York, 1976)

    Google Scholar 

  20. B.D. Cullity, C.D. Graham, Introduction to magnetic materials, 2nd edn. (Wiley, New Jersey, 2009)

    Google Scholar 

  21. C.M.B. Henderson, J.M. Charnook, D.A. Plant, J. Phys. Condes. Matter. 19, 076214–076239 (2007)

    Article  Google Scholar 

  22. R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  23. M. George, A. Mary John, S.S. Nair, P.A. Joy, M.R. Anantharaman, J. Magn. Magn. Mater. 302(1), 190–195 (2006)

    Article  Google Scholar 

  24. A. Azizi, S.K. Sadrnezhaad, Ceram. Int. 36(7), 2241–2245 (2010)

    Article  Google Scholar 

  25. A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, J. Alloys Compd. 633, 306–316 (2015)

    Article  Google Scholar 

  26. A. Hajalilou, M. Hashim, H. MohamedKamari, M.T. Masoudi, J. Nanomater. 2015(615739), 1–11 (2015). doi:10.1155/2015/615739

    Article  Google Scholar 

  27. M. Gharagozlou, J. Alloys Compd. 495, 217–223 (2010)

    Article  Google Scholar 

  28. J.M. Greneche, A. Ślawska-Waniewska, J. Magn. Magn. Mater. 215–216, 264–267 (2000)

    Article  Google Scholar 

  29. J. Smit, H.P.J. Wijn, Ferrites: physical properties of ferrimagnetic oxides in relation to their technical applications (Wiley, Hoboken, 1959)

    Google Scholar 

Download references

Acknowledgments

The corresponding author would like to appreciate University Putra Malaysia Graduate Research Fellowship section for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdollah Hajalilou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajalilou, A., Hashim, M., Abbasi, M. et al. A comparative study on the effects of different milling atmospheres and sintering temperatures on the synthesis and magnetic behavior of spinel single phase Ni0.64Zn0.36Fe2O4 nanocrystals. J Mater Sci: Mater Electron 26, 7468–7483 (2015). https://doi.org/10.1007/s10854-015-3381-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-3381-9

Keywords

Navigation