Skip to main content

Advertisement

Log in

Challenges in Laboratory Detection of Fungal Pathogens in the Airways of Cystic Fibrosis Patients

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Study of the clinical significance of fungal colonization/infection in the airways of cystic fibrosis (CF) patients, especially by filamentous fungi, is challenged by the absence of standardized methodology for the detection and identification of an ever-broadening range of fungal pathogens. Culture-based methods remain the cornerstone diagnostic approaches, but current methods used in many clinical laboratories are insensitive and unstandardized, rendering comparative studies unfeasible. Guidelines for standardized processing of respiratory specimens and for their culture are urgently needed and should include recommendations for specific processing procedures, inoculum density, culture media, incubation temperature and duration of culture. Molecular techniques to detect fungi directly from clinical specimens include panfungal PCR assays, multiplex or pathogen-directed assays, real-time PCR, isothermal methods and probe-based assays. In general, these are used to complement culture. Fungal identification by DNA sequencing methods is often required to identify cultured isolates, but matrix-assisted laser desorption/ionization time-of-flight mass spectrometry is increasingly used as an alternative to DNA sequencing. Genotyping of isolates is undertaken to investigate relatedness between isolates, to pinpoint the infection source and to study the population structure. Methods range from PCR fingerprinting and amplified fragment length polymorphism analysis, to short tandem repeat typing, multilocus sequencing typing (MLST) and whole genome sequencing (WGS). MLST is the current preferred method, whilst WGS offers best case resolution but currently is understudied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet. 2009;373:1891–904.

    Article  PubMed  Google Scholar 

  2. Lyczak JB, Cannon CL, Pier GB. Lung infections in cystic fibrosis. Clin Microbiol Rev. 2002;15:194–222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hoiby N, Frederikson B, Pressler T. Eradication of early Pseudomonas aeruginosa infection. J Cyst Fibros. 2005;4:49–54.

    Article  CAS  PubMed  Google Scholar 

  4. Burns JL, Rolain JM. Culture-based diagnostic microbiology in cystic fibrosis: can we simplify the complexity? J Cyst Fibros. 2014;13:1–9.

    Article  PubMed  Google Scholar 

  5. Koch C, Hoiby N. Diagnosis and treatment of cystic fibrosis. Respiration. 2000;67:239–47.

    Article  CAS  PubMed  Google Scholar 

  6. Pihet M, Carrère J, Cimon B, et al. Occurrence and relevance of filamentous fungi in respiratory secretions of patients with cystic fibrosis-a review. Med Mycol. 2009;47:387–97.

    Article  PubMed  Google Scholar 

  7. Blyth CC, Harun A, Middleton PG, et al. Detection of occult Scedosporium species in respiratory tract specimens from patients with cystic fibrosis by use of selective media. J Clin Microbiol. 2010;48:312–6.

    Article  Google Scholar 

  8. De Pauw B, Walsh TJ, Donnelly JP, European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group; National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group, et al. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis. 2008;46:1813–21.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Horre R, Marklein G, Siekmeier R, Rieffert SM. Detection of hyphomycetes in the upper respiratory tract of patients with cystic fibrosis. Mycoses. 2011;54:514–22.

    Article  CAS  PubMed  Google Scholar 

  10. Baxter CG, Moore CB, Jones AM, Webb AK, Denning DW. IgE-mediated immune responses and airway detection of Aspergillus and Candida in adult cystic fibrosis. Chest. 2013;143:1351–7.

    Article  CAS  PubMed  Google Scholar 

  11. de Vrankrijker AM, van der Ent CK, van Berkhout FT, et al. Aspergillus fumigatus colonization in cystic fibrosis: implications for lung function? Clin Microbiol Infect. 2010;17:1381–6.

    Article  PubMed  Google Scholar 

  12. Amin R, Dupuis A, Aaron SD, Ratjen F. The effect of chronic infection with Aspergillus fumigatus on lung function and hospitalisation in cystic fibrosis patients. Chest. 2010;137:171–6.

    Article  PubMed  Google Scholar 

  13. Fillaux J, Bremont F, Murris M, et al. Aspergillus sensitization or carriage in cystic fibrosis patients. Pediatr Infect Dis J. 2014;33:680–6.

    Article  PubMed  Google Scholar 

  14. Chotirmall SH, O’Donoghue E, Bennett K, et al. Sputum Candida albicans presages FEV1 decline and hospital-treated exacerbations in cystic fibrosis. Chest. 2010;138:1186–95.

    Article  PubMed  Google Scholar 

  15. Cimon B, Carrère J, Vinatier JF, et al. Clinical significance of Scedosporium apiospermum in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2000;19:53–6.

    Article  CAS  PubMed  Google Scholar 

  16. Blyth CC, Middleton PG, Harun A, et al. Clinical associations and prevalence of Scedosporium spp. in Australian cystic fibrosis patients: identification of novel risk factors? Med Mycol. 2010;48:S37–44.

    Article  CAS  PubMed  Google Scholar 

  17. Lake FR, Tribe AE, McAleer R, Froudist J, Thompson PJ. Mixed allergic bronchopulmonary fungal disease due to Pseudallescheria boydii and Aspergillus. Thorax. 1990;45:489–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Morio F, Horeau-Langlard D, Gay-Andrieu F, et al. Disseminated Scedosporium/Pseudallescheria infection after double-lung transplantation in patients with cystic fibrosis. J Clin Microbiol. 2010;48:1978–82.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Johnson LS, Shields RK, Clancy CJ. Epidemiology, clinical manifestations, and outcomes of Scedosporium infections among solid organ transplant recipients. Transpl Infect Dis. 2014;16:578–87.

    Article  CAS  PubMed  Google Scholar 

  20. Husain S, Munoz P, Forrest G, et al. Infections due to Scedosporium apiospermum and Scedosporium prolificans in transplant recipients: clinical characteristics and impact of antifungal agent therapy on outcome. Clin Infect Dis. 2005;40:89–99.

    Article  PubMed  Google Scholar 

  21. Lackner M, de HoogGS Verweij PE, et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother. 2012;56:2635–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kondori N, Gilljam M, Lindblad A, et al. High rate of Exophiala dermatitidis recovery in the airways of patients with cystic fibrosis is associated with pancreatic insufficiency. J Clin Microbiol. 2011;49:1004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lebecque P, Leonard A, Huang D, et al. Exophiala (Wangiella) dermatitidis and cystic fibrosis—prevalence and risk factors. Med Mycol. 2010;48(Suppl 1):S4–9.

    Article  PubMed  Google Scholar 

  24. Giraud S, Pihet M, Razafimandimby B, et al. Geosmithia argillacea: an emerging pathogen in patients with cystic fibrosis. J Clin Microbiol. 2010;48:2381–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Borman AM, Palmer MD, Delhaes L, et al. Lack of standardization in the procedures for mycological examination of sputum samples from CF patients: a possible cause for variations in the prevalence of filamentous fungi. Med Mycol. 2010;48(Suppl 1):S88–97.

    Article  PubMed  Google Scholar 

  26. Fraczek MG, Kirwan MB, Moore CB, et al. Volume dependency for culture of fungi from respiratory secretions and increased sensitivity of Aspergillus quantitative PCR. Mycoses. 2014;57:69–78.

    Article  PubMed  Google Scholar 

  27. Pashley CH, Fairs A, Morley JP, et al. Routine processing procedures for isolating filamentous fungi from respiratory sputum samples may underestimate fungal prevalence. Med Mycol. 2012;50:433–8.

    Article  PubMed  Google Scholar 

  28. Health Protection Agency. Investigation of bronchoalveolar lavage, sputum and associated specimens. National Standard Method BSOP57. 2008(2.2).

  29. Nagano Y, Elborn JS, Miller BC, et al. Comparison of techniques to examine the diversity of fungi in adult patients with cystic fibrosis. Med Mycol. 2010;48:166–76.

    Article  CAS  PubMed  Google Scholar 

  30. Horre R, Schaal KP, Siekmeier R, et al. Isolation of fungi, especially Exophiala dermatitidis, in patients suffering from cystic fibrosis—a prospective study. Respiration. 2004;71:360–6.

    Article  CAS  PubMed  Google Scholar 

  31. Masoud-Landgraf L, Badura A, Eber E, et al. Modified culture method detects a high diversity of fungal species in cystic fibrosis patients. Med Mycol. 2014;52:179–86.

    PubMed  Google Scholar 

  32. Pizzichini E, Pizzichini MM, Kidney JC, et al. Induced sputum, bronchoalveolar lavage and blood from mild asthmatics: inflammatory cells, lymphocyte subsets and soluble markers compared. Eur Resp J. 1998;11:828–34.

    Article  CAS  Google Scholar 

  33. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:828–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sleiman S, Halliday CL, Chapman B, et al. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of Aspergillus, Scedosporium, and Fusarium spp. in the Australian clinical setting. J Clin Microbiol. 2016;54:2182–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ranque S, Normand AC, Cassagne C, et al. MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses. 2014;57:135–40.

    Article  CAS  PubMed  Google Scholar 

  36. Cassagne C, Normand AC, L’Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016;59:678–90.

    Article  PubMed  Google Scholar 

  37. Lagier JC, Armougom F, Million M, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18:1185–93.

    Article  CAS  PubMed  Google Scholar 

  38. Gouba N, Raoult D, Drancourt M. Eukaryote culturomics of the gut reveals new species. PLoS ONE. 2014;9(9):e106994.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Halliday CL, Kidd SE, Sorrell TC, Chen SC. Molecular diagnostic methods for invasive fungal disease: the horizon draws nearer. Pathology. 2015;47:257–69.

    Article  CAS  PubMed  Google Scholar 

  40. Arvanitis M, Anagostou T, Burgwyn Fuchs B. Molecular and non molecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev. 2014;27:490–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gomez BL. Molecular diagnosis of endemic and invasive mycoses: advances and challenges. Rev Iberoam Micol. 2014;31:35–41.

    Article  PubMed  Google Scholar 

  42. Lau A, Chen S, Sorrell T, et al. Development and clinical application of a panfungal assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol. 2007;45:380–5.

    Article  CAS  PubMed  Google Scholar 

  43. Rickerts V, Mousset S, Lambrecht E, et al. Comparison of histopathological analysis, culture and polymerase chain reaction assays to detect invasive mould infections from biopsy specimens. Clin Infect Dis. 2007;44:1078–83.

    Article  PubMed  Google Scholar 

  44. Lass-Flörl C, Mutschlechner W, Aigner M. Utility of PCR in diagnosis of invasive fungal infections: real–life data from a multicentre study. J Clin Microbiol. 2013;51:863–8.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Schoch CL, Seifert KA, Huhndorf S, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA. 2012;109:6241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Irinyi L, Serena C, Garcia-Hermoso D, et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol. 2015;53:313–37.

    Article  CAS  PubMed  Google Scholar 

  47. Schoch CL, Robberts B, Robert V, et al. Finding needles in haystacks: linking scientific names, reference specimens and molecular data for Fungi. Database (Oxford) 2014;2014. pii:bau061.

  48. Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technologies. Trends Genet. 2014;30:418–26.

    Article  PubMed  Google Scholar 

  49. Delhaes L, Monchy S, Fréalle E, et al. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS ONE. 2012;7:e36313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gilgado F, Cano J, Gené J, Sutton DA, Guarro J. Molecular and phenotypic data supporting distinct species statuses for Scedosporium apiospermum and Pseudallescheria boydii and the proposed new species Scedosporium dehoogii. J Clin Microbiol. 2008;46:766–71.

    Article  PubMed  Google Scholar 

  51. Lawrence DP, Gannibal PB, Peever TL, Pryor BM. The sections of Alternaria: formalizing species-group concepts. Mycologia. 2013;105:530–46.

    Article  PubMed  Google Scholar 

  52. Abliz P, Fukushima K, Takizawa K, Nishimura K. Identification of pathogenic dematiaceous fungi and related taxa based on large subunit ribosomal D1/D2 domain sequence analysis. FEMS Immunol Med Microbiol. 2004;40:41–9.

    Article  CAS  PubMed  Google Scholar 

  53. Harun A, Blyth C, Gilgado F, et al. Development and validation of a multiplex PCR for detection of Scedosporium spp. in respiratory tract specimens from patients with cystic fibrosis. J Clin Microbiol. 2011;49:1508–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Henegariu O, Heerema NA, Dlughy SR, Vance GH, Vogt PH. Multiplex-PCR: critical parameters and step-by-step protocol. Biogeosciences. 1997;23:504–11.

    CAS  Google Scholar 

  55. Castelli MV, Biutrago MJ, Bernal-Martinez L, et al. Development of validation of a quantitative PCR assay for diagnosis of scedosporiosis. J Clin Microbiol. 2008;46:3412–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Steinmann J, Giraud S, Schmidt D, et al. Validation of a novel real-time PCR for detecting Rasamsonia argillacea species complex in respiratory secretions from cystic fibrosis patients. New Microb New Infect. 2014;2:72–8.

    Article  CAS  Google Scholar 

  57. Baxter CG, Dunn G, Jones AM, et al. Novel immunologic classification of aspergillosis in adult cystic fibrosis. J Allergy Clin Immunol. 2013;132(560):6.e10.

    Google Scholar 

  58. Torelli R, Sanguinetti M, Moody A. Diagnosis of invasive aspergillosis by a commercial real-time PCR assay for Aspergillus DNA in bronchoalveolar lavage fluid samples from high risk patients compared to a galactomannan enzyme immunoassay. J Clin Microbiol. 2011;49:4273–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chong G-L, Van de Sande WWJ, Dingemans GJH, et al. Validation of a new Aspergillus real-time PCR assay for direct detection of Aspergillus and azole resistance of Aspergillus fumigatus on bronchoalveolar lavage fluid. J Clin Microbiol. 2015;53:868–74.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bouchara JP, Hsieh HY, Croquefer S, et al. Development of an oligonucleotide assay for direct detection of fungi in sputum samples from patients with cystic fibrosis. J Clin Microbiol. 2009;47:142–52.

    Article  CAS  PubMed  Google Scholar 

  61. Delhaes L, Harun A, Chen SC, et al. Molecular typing of Australian Scedosporium isolates showing genetic variability and numerous S. aurantiacum. Emerg Infect Dis. 2008;14:282–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lackner M, Klaassen CH, Meis J, van den Ende A, de Hoog GS. Molecular identification tools for sibling species of Scedosporium and Pseudallescheria. Med Mycol. 2012;50:497–508.

    Article  CAS  PubMed  Google Scholar 

  63. Zhou X, Kong F, Sorrell TC, et al. Practical method for detection and identification of Candida, Aspergillus, and Scedosporium spp. by use of rolling circle amplification. J Clin Microbiol. 2008;46:2423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lackner M, Najafzadeh MJ, Sun J, Lu Q, de Hoog GS. Rapid identification of Pseudallescheria and Scedosporium strains by using rolling circle amplification. Appl Environ Microbiol. 2012;78:126–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matray O, Mouhajir A, Giraud S, et al. Semi-automated repetitive sequence-based PCR amplification for species of the Scedosporium apiospermum complex. Med Mycol. 2016;54:409–19.

    Article  PubMed  Google Scholar 

  66. Steinmann J, Schmidt D, Buer J, Rath PM. Discrimination of Scedosporium prolificans against Pseudallescheria boydii and Scedosporium apiospermum by semiautomated repetitive sequence-based PCR. Med Mycol. 2011;49:475–83.

    CAS  PubMed  Google Scholar 

  67. Mouhajir A, Matray O, Giraud S, et al. Long-term Rasamsonia argillacea complex species colonization revealed by PCR amplification of repetitive DNA sequences in cystic fibrosis patients. J Clin Microbiol. 2016;54:2804–12.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zouhair R, Defontaine A, Ollivier C, et al. Typing Scedosporium apiospermum by multilocus enzyme electrophoresis and random amplification of polymorphic DNA. J Med Microbiol. 2001;50:925–32.

    Article  CAS  PubMed  Google Scholar 

  69. Defontaine A, Zouhair R, Cimon B, et al. Genotype study of Scedosporium apiospermum isolates from patients with cystic fibrosis. J Clin Microbiol. 2002;40:2108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bosma F, Voss A, van Hamersvelt HW, et al. Two cases of subcutaneous Scedosporium apiospermum infections treated with voriconazole. Clin Microbiol Infect. 2003;9:750–3.

    Article  CAS  PubMed  Google Scholar 

  71. Symoens F, Knoop C, Schrooyen M, et al. Disseminated Scedosporium apiospermum infection in a cystic fibrosis patient after double lung transplantation. J Heart Lung Transpl. 2006;25:603–7.

    Article  Google Scholar 

  72. Hong G, White M, Lechtin N, et al. Fatal disseminated Rasamonia infection in cystic fibrosis post lung transplantation. J Cyst Fibros. 2017;16:e3–7.

    Article  PubMed  Google Scholar 

  73. Ruiz-Diez B, Martin-Diez F, Rodriguez-Tudela JL, Alvarez M, Martinez-Suarez JV. Use of random amplification of polymorphic DNA (RAPD) and PCR-fingerprinting for genotyping of Scedosporium prolificans (inflatum) outbreak in four leukaemic patients. Curr Microbiol. 1997;35:186–90.

    Article  CAS  PubMed  Google Scholar 

  74. Rainer J, de Hoog GS, Wedde M, Gräser Y, Gilges S. Molecular variability of Pseudallescheria boydii, a neurotropic opportunist. J Clin Microbiol. 2000;38:3267–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Solé M, Cano J, Rodriguez-Tudela JL, et al. Molecular typing of clinical and environmental isolates of Scedosporium prolificans by inter-simple-sequence repeat polymerase chain reaction. Med Mycol. 2003;41:293–300.

    Article  PubMed  Google Scholar 

  76. Vos P, Hogers R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 1995;23:4407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. de Valk HA, Meis JFGM, Curfs IM, et al. Use of a novel panel of nine short tandem repeats for exact and high-resolution fingerprinting of Aspergillus fumigatus isolates. J Clin Microbiol. 2005;43:4112–20.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rougeron A, Giraud S, Raafimandimby B, et al. Different colonization patterns of Aspergillus terreus in patients with cystic fibrosis. Clin Microbiol Infect. 2014;20:327–33.

    Article  CAS  PubMed  Google Scholar 

  79. Hadrich I, Makni F, Ayadi A, Ranque S. Microsatellite typing to trace Aspergillus flavus infections in a hematology unit. J Clin Microbiol. 2010;48:2396–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bernhardt A, Sedlacek L, Wagner S, et al. Multilocus sequence typing of Scedosporium apiospermum and Pseudallescheria boydii isolates from cystic fibrosis patients. J Cyst Fibros. 2013;12:592–8.

    Article  CAS  PubMed  Google Scholar 

  81. Engelthaler DM, Hicks ND, Gillece JD, et al. Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. MBio. 2014;5:e01464-14.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CHP is supported by the Midlands Asthma and Allergy Research Association (MAARA) and the National Institute for Health Research (NIHR) Leicester Respiratory Biomedical Research Unit. WM and SC-AC are supported by the National Health and Medical Research Council of Australia and the NSW government. The views expressed here are those of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharon C.-A. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S.CA., Meyer, W. & Pashley, C.H. Challenges in Laboratory Detection of Fungal Pathogens in the Airways of Cystic Fibrosis Patients. Mycopathologia 183, 89–100 (2018). https://doi.org/10.1007/s11046-017-0150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-017-0150-8

Keywords

Navigation