Skip to main content
Log in

Relevant Animal Models in Dermatophyte Research

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Dermatophytoses are common superficial fungal infections affecting both humans and animals. They are provoked by filamentous fungi called dermatophytes specialized in the degradation of keratinized structures, which allows them to induce skin, hair and nail infections. Despite their high incidence, little investigation has been performed for the understanding of these infections compared to fungal opportunistic infections and most of the studies were based on in vitro experiments. The development of animal models for dermatophyte research is required to evaluate new treatments against dermatophytoses or to increase knowledge about fungal pathogenicity factors or host immune response mechanisms. The guinea pig has been the most often used animal model to evaluate efficacy of antifungal compounds against dermatophytes, while mouse models were preferred to study the immune response generated during the disease. Here, we review the relevant animal models that were developed for dermatophyte research and we discuss the advantages and disadvantages of the selected species, especially guinea pig and mouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chermette R, Ferreiro L, Guillot J. Dermatophytoses in animals. Mycopathologia. 2008;166:385–405.

    Article  PubMed  Google Scholar 

  3. Degreef H. Clinical forms of dermatophytosis (ringworm infection). Mycopathologia. 2008;166:257–65.

    Article  PubMed  Google Scholar 

  4. Seebacher C, Bouchara JP, Mignon B. Updates on the epidemiology of dermatophyte infections. Mycopathologia. 2008;166:335–52.

    Article  PubMed  Google Scholar 

  5. Ameen M. Epidemiology of superficial fungal infections. Clin Dermatol. 2010;28:197–201.

    Article  PubMed  Google Scholar 

  6. Gupta AK, Cooper EA. Update in antifungal therapy of dermatophytosis. Mycopathologia. 2008;166:353–67.

    Article  PubMed  Google Scholar 

  7. Lund A, Deboer DJ. Immunoprophylaxis of dermatophytosis in animals. Mycopathologia. 2008;166:407–24.

    Article  PubMed  Google Scholar 

  8. Brasch J. Current knowledge of host response in human tinea. Mycoses. 2009;52:304–12.

    Article  CAS  PubMed  Google Scholar 

  9. Mignon BR, Losson BJ. Prevalence and characterization of Microsporum canis carriage in cats. J Med Vet Mycol. 1997;35:249–56.

    Article  CAS  PubMed  Google Scholar 

  10. Saunte DM, Hasselby JP, Brillowska-Dabrowska A, et al. Experimental guinea pig model of dermatophytosis: a simple and useful tool for the evaluation of new diagnostics and antifungals. Med Mycol. 2008;46:303–13.

    Article  CAS  PubMed  Google Scholar 

  11. Staib P, Zaugg C, Mignon B, et al. Differential gene expression in the pathogenic dermatophyte Arthroderma benhamiae in vitro versus during infection. Microbiology. 2010;156:884–95.

    Article  CAS  PubMed  Google Scholar 

  12. Grumbt M, Defaweux V, Mignon B, et al. Targeted gene deletion and in vivo analysis of putative virulence gene function in the pathogenic dermatophyte Arthroderma benhamiae. Eukaryot Cell. 2011;10:842–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Knight AG. A review of experimental human fungus infections. J Invest Dermatol. 1972;59:354–8.

    Article  CAS  PubMed  Google Scholar 

  14. Reinhardt JH, Allen AM, Gunnison D, Akers WA. Experimental human Trichophyton mentagrophytes infections. J Invest Dermatol. 1974;63:419–22.

    Article  CAS  PubMed  Google Scholar 

  15. Kumar N, Goindi S. Statistically designed nonionic surfactant vesicles for dermal delivery of itraconazole: characterization and in vivo evaluation using a standardized Tinea pedis infection model. Int J Pharm. 2014;472:224–40.

    Article  CAS  PubMed  Google Scholar 

  16. Kumar N, Shishu. D-optimal experimental approach for designing topical microemulsion of itraconazole: characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur J Pharm Sci. 2015;67:97–112.

    Article  CAS  PubMed  Google Scholar 

  17. Van Cutsem J, Janssen PA. Experimental systemic dermatophytosis. J Invest Dermatol. 1984;83:26–31.

    Article  PubMed  Google Scholar 

  18. Green F, Weber JK, Balish E. The thymus dependency of acquired resistance to Trichophyton mentagrophytes dermatophytosis in rats. J Invest Dermatol. 1983;81:31–8.

    Article  PubMed  Google Scholar 

  19. Weber J, Balish E. Antifungal therapy of dermatophytosis in guinea pigs and congenitally athymic rats. Mycopathologia. 1985;90:47–54.

    Article  CAS  PubMed  Google Scholar 

  20. Faldyna M, Oborilova E, Krejci J, et al. A correlation of in vitro tests for the immune response detection: a bovine trichophytosis model. Vaccine. 2007;25:7948–54.

    Article  CAS  PubMed  Google Scholar 

  21. de Arruda MS, Gilioli S, Vilani-Moreno FR. Experimental dermatophytosis in hamsters inoculated with Trichophyton mentagrophytes in the cheek pouch. Rev Ins Med Trop São Paulo. 2001;43:29–32.

    Google Scholar 

  22. Shimamura T, Kubota N, Nagasaka S, et al. Establishment of a novel model of onychomycosis in rabbits for evaluation of antifungal agents. Antimicrob Agents Chemother. 2011;55:3150–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. DeBoer DJ, Moriello KA. Development of an experimental model of Microsporum canis infection in cats. Vet Microbiol. 1994;42:289–95.

    Article  CAS  PubMed  Google Scholar 

  24. DeBoer DJ, Moriello KA. Inability of two topical treatments to influence the course of experimentally induced dermatophytosis in cats. J Am Vet Med Assoc. 1995;207:52–7.

    CAS  PubMed  Google Scholar 

  25. Moriello KA, Deboer DJ, Schenker R, Blum JL, Volk LM. Efficacy of pre-treatment with lufenuron for the prevention of Microsporum canis infection in a feline direct topical challenge model. Vet Dermatol. 2004;15:357–62.

    Article  PubMed  Google Scholar 

  26. DeBoer DJ, Moriello KA. The immune response to Microporum canis induced by a fungal cell wall vaccine. Vet Dermatol. 1994;5:47–55.

    Article  Google Scholar 

  27. DeBoer DJ, Moriello KA, Blum JL, Volk LM, Bredahl LK. Safety and immunologic effects after inoculation of inactivated and combined live-inactivated dermatophytosis vaccines in cats. Am J Vet Res. 2002;63:1532–7.

    Article  PubMed  Google Scholar 

  28. DeBoer DJ, Moriello KA. Investigations of a killed dermatophyte cell-wall vaccine against infection with Microsporum canis in cats. Res Vet Sci. 1995;59:110–3.

    Article  CAS  PubMed  Google Scholar 

  29. Achterman RR, Smith AR, Oliver BG, White TC. Sequenced dermatophyte strains: growth rate, conidiation, drug susceptibilities, and virulence in an invertebrate model. Fungal Genet Biol. 2011;48:335–41.

    Article  CAS  PubMed  Google Scholar 

  30. Cotter G, Doyle S, Kavanagh K. Development of an insect model for the in vivo pathogenicity testing of yeasts. FEMS Immunol Med Microbiol. 2000;27:163–9.

    Article  CAS  PubMed  Google Scholar 

  31. Cowen LE, Singh SD, Köhler JR, et al. Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA. 2009;106:2818–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jackson JC, Higgins LA, Lin X. Conidiation color mutants of Aspergillus fumigatus are highly pathogenic to the heterologous insect host Galleria mellonella. PLoS ONE. 2009;4:e4224.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mowlds P, Kavanagh K. Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia. 2008;165:5–12.

    Article  PubMed  Google Scholar 

  34. Mylonakis E. Galleria mellonella and the study of fungal pathogenesis: making the case for another genetically tractable model host. Mycopathologia. 2008;165:1–3.

    Article  PubMed  Google Scholar 

  35. Reeves EP, Messina CGM, Doyle S, Kavanagh K. Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia. 2004;158:73–9.

    Article  CAS  PubMed  Google Scholar 

  36. St Leger RJ, Screen SE, Shams-Pirzadeh B. Lack of host specialization in Aspergillus flavus. Appl Environ Microbiol. 2000;66:320–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jahn B, Koch A, Schmidt A, et al. Isolation and characterization of a pigmentless-conidium mutant of Aspergillus fumigatus with altered conidial surface and reduced virulence. Infect Immun. 1997;65:5110–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsai HF, Chang YC, Washburn RG, Wheeler MH, Kwon-Chung KJ. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J bacteriol. 1998;180:3031–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Aggarwal N, Goindi S. Preparation and evaluation of antifungal efficacy of griseofulvin loaded deformable membrane vesicles in optimized guinea pig model of Microsporum canis—dermatophytosis. Int J Pharm. 2012;437:277–87.

    Article  CAS  PubMed  Google Scholar 

  40. De Baltazar LM, Santos PC, de Paula TP, et al. IFN-γ impairs Trichophyton rubrum proliferation in a murine model of dermatophytosis through the production of IL-1β and reactive oxygen species. Med Mycol. 2014;52:293–302.

    Article  CAS  Google Scholar 

  41. Calderon RA, Hay RJ. Cell-mediated immunity in experimental murine dermatophytosis. I. Temporal aspects of T-suppressor activity caused by Trichophyton quinckeanum. Immunology. 1984;53:457–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Garvey EP, Hoekstra WJ, Moore WR, et al. VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother. 2015;59:1992–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ghannoum MA, Hossain MA, Long L, et al. Evaluation of antifungal efficacy in an optimized animal model of Trichophyton mentagrophytes—dermatophytosis. J Chemother. 2004;16:139–44.

    Article  CAS  PubMed  Google Scholar 

  44. Itoyama T, Uchida K, Yamaguchi H, Fujita S. Therapeutic effects of omoconazole nitrate on experimental tinea pedis, an intractable dermatophytosis, in guinea-pigs. J Antimicrob Chemother. 1997;40:441–4.

    Article  CAS  PubMed  Google Scholar 

  45. Koga H, Nanjoh Y, Kaneda H, Yamaguchi H, Tsuboi R. Short-term therapy with luliconazole, a novel topical antifungal imidazole, in guinea pig models of tinea corporis and tinea pedis. Antimicrob Agents Chemother. 2012;56:3138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Majima T, Masui S, Uchida K, Yamaguchi H. A novel mycological analysis valuable for evaluating therapeutic efficacy of antimycotics against experimental dermatophytosis in guinea pigs. Mycoses. 2005;48:108–13.

    Article  CAS  PubMed  Google Scholar 

  47. Mikaeili A, Modaresi M, Karimi I, et al. Antifungal activities of Astragalus verus Olivier against Trichophyton verrucosum on in vitro and in vivo guinea pig model of dermatophytosis. Mycoses. 2012;55:318–25.

    Article  PubMed  Google Scholar 

  48. Nakashima T, Nozawa A, Ito T, Majima T, Yamaguchi H. Development of a new medium useful for the recovery of dermatophytes from clinical specimens by minimizing the carryover effect of antifungal agents. Microbiol Immunol. 2002;46:83–8.

    Article  CAS  PubMed  Google Scholar 

  49. Venturini J, Álvares AM, de Camargo MRD, et al. Dermatophyte-host relationship of a murine model of experimental invasive dermatophytosis. Microbes Infect. 2012;14:1144–51.

    Article  CAS  PubMed  Google Scholar 

  50. Cambier L, Weatherspoon A, Defaweux V, et al. Assessment of the cutaneous immune response during Arthroderma benhamiae and A. vanbreuseghemii infection using an experimental mouse model. Br J Dermatol. 2014;170:625–33.

    Article  CAS  PubMed  Google Scholar 

  51. Hunjan BS, Cronholm LS. An animal model for cell-mediated immune responses to dermatophytes. J Allergy Clin Immunol. 1979;63:361–9.

    Article  CAS  PubMed  Google Scholar 

  52. Odds F, Ausma J, Van Gerven F, et al. In vitro and in vivo activities of the novel azole antifungal agent r126638. Antimicrob Agents Chemother. 2004;48:388–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Singh G, Kumar P, Joshi SC. Treatment of dermatophytosis by a new antifungal agent “apigenin”. Mycoses. 2014;57:497–506.

    Article  CAS  PubMed  Google Scholar 

  54. Cambier L, Băguţ E-T, Heinen M-P, et al. Assessment of immunogenicity and protective efficacy of Microsporum canis secreted components coupled to monophosphoryl lipid-A adjuvant in a vaccine study using guinea pigs. Vet Microbiol. 2015;175:304–11.

    Article  CAS  PubMed  Google Scholar 

  55. Baldo A, Mathy A, Tabart J, et al. Secreted subtilisin Sub3 from Microsporum canis is required for adherence to but not for invasion of the epidermis. Br J Dermatol. 2010;162:990–7.

    Article  CAS  PubMed  Google Scholar 

  56. Fujita S, Matsuyama T. Experimental tinea pedis induced by non-abrasive inoculation of Trichophyton mentagrophytes arthrospores on the plantar part of a guinea pig foot. J Med Vet Mycol. 1987;25:203–13.

    Article  CAS  PubMed  Google Scholar 

  57. Greenberg JH, King RD, Krebs S, Field R. A quantitative dermatophyte infection model in the guinea pig—a parallel to the quantitated human infection model. J Invest Dermatol. 1976;67:704–8.

    Article  CAS  PubMed  Google Scholar 

  58. Prasad CS, Shukla R, Kumar A, Dubey NK. In vitro and in vivo antifungal activity of essential oils of Cymbopogon martini and Chenopodium ambrosioides and their synergism against dermatophytes. Mycoses. 2010;53:123–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lau K-M, Wong JH, Wu Y-O, et al. Anti-dermatophytic activity of bakuchiol: in vitro mechanistic studies and in vivo tinea pedis-inhibiting activity in a guinea pig model. Phytomedicine. 2014;21:942–5.

    Article  CAS  PubMed  Google Scholar 

  60. Chittasobhon N, Smith JM. The production of experimental dermatophyte lesions in guinea pigs. J Invest Dermatol. 1979;73:198–201.

    Article  CAS  PubMed  Google Scholar 

  61. Nakamura T, Nishibu A, Yasoshima M, et al. Analysis of Trichophyton antigen-induced contact hypersensitivity in mouse. J Dermatol Sci. 2012;66:144–53.

    Article  CAS  PubMed  Google Scholar 

  62. Mei Y, Dai X, Yang W, Xu X, Liang Y. Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum. Int J Biol Macromol. 2015;77:330–5.

    Article  CAS  PubMed  Google Scholar 

  63. Calderon RA, Hay RJ. Cell-mediated immunity in experimental murine dermatophytosis. II. Adoptive transfer of immunity to dermatophyte infection by lymphoid cells from donors with acute or chronic infections. Immunology. 1984;53:465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Hay RJ, Calderon RA, Collins MJ. Experimental dermatophytosis: the clinical and histopathologic features of a mouse model using Trichophyton quinckeanum (mouse favus). J Invest Dermatol. 1983;81:270–4.

    Article  CAS  PubMed  Google Scholar 

  65. Treiber A, Pittermann W, Schuppe HC. Efficacy testing of antimycotic prophylactics in an animal model. Int J Hyg Environ Health. 2001;204:239–43.

    Article  CAS  PubMed  Google Scholar 

  66. Chen X-J, Shen Y-N, Lü G-X, Liu W-D. Establishing an experimental guinea pig model of dermatophytosis using Trichophyton rubrum. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2008;30:599–602.

    PubMed  Google Scholar 

  67. Mao L, Zhang L, Li H, Chen W, et al. Pathogenic fungus Microsporum canis activates the NLRP3 inflammasome. Infect Immun. 2014;82:882–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pier AC, Hodges AB, Lauze JM, Raisbeck M. Experimental immunity to Microsporum canis and cross reactions with other dermatophytes of veterinary importance. J Med Vet Mycol. 1995;33:93–7.

    Article  CAS  PubMed  Google Scholar 

  69. Li Z-J, Guo X, Dawuti G, Aibai S. Antifungal activity of ellagic acid in vitro and in vivo. Phytother Res. 2015;29:1019–25.

    Article  CAS  PubMed  Google Scholar 

  70. Arika T, Yokoo M, Hase T, et al. Effects of butenafine hydrochloride, a new benzylamine derivative, on experimental dermatophytosis in guinea pigs. Antimicrob Agents Chemother. 1990;34:2250–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Arika T, Yokoo M, Maeda T, Amemiya K, Yamaguchi H. Effects of butenafine hydrochloride, a new benzylamine derivative, on experimental tinea pedis in guinea pigs. Antimicrob Agents Chemother. 1990;34:2254–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Meerpoel L, Backx LJJ, Van der Veken LJE, et al. Synthesis and in vitro and in vivo structure–activity relationships of novel antifungal triazoles for dermatology. J Med Chem. 2005;48:2184–93.

    Article  CAS  PubMed  Google Scholar 

  73. Paulussen C, de Wit K, Boulet G, et al. Pyrrolo[1,2-α][1,4]benzodiazepines show potent in vitro antifungal activity and significant in vivo efficacy in a Microsporum canis dermatitis model in guinea pigs. J Antimicrob Chemother. 2014;69:1608–10.

    Article  CAS  PubMed  Google Scholar 

  74. Saunte DM, Simmel F, Frimodt-Moller N, et al. In vivo efficacy and pharmacokinetics of voriconazole in an animal model of dermatophytosis. Antimicrob Agents Chemother. 2007;51:3317–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Arika T, Hase T, Yokoo M. Anti-Trichophyton mentagrophytes activity and percutaneous permeation of butenafine in guinea pigs. Antimicrob Agents Chemother. 1993;37:363–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Arika T, Yokoo M, Yamaguchi H. Topical treatment with butenafine significantly lowers relapse rate in an interdigital tinea pedis model in guinea pigs. Antimicrob Agents Chemother. 1992;36:2523–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Fu KP, Isaacson DM, Lococo J, Foleno B, Hilliard J. In vitro and in vivo antidermatophytic activity of saperconazole, a new fluorinated triazole. Drugs Exp Clin Res. 1992;18:443–6.

    CAS  PubMed  Google Scholar 

  78. Ghannoum MA, Long L, Kim HG, et al. Efficacy of terbinafine compared to lanoconazole and luliconazole in the topical treatment of dermatophytosis in a guinea pig model. Med Mycol. 2010;48:491–7.

    Article  CAS  PubMed  Google Scholar 

  79. Ghannoum MA, Long L, Cirino AJ, et al. Efficacy of NVC-422 in the treatment of dermatophytosis caused by Trichophyton mentagrophytes using a guinea pig model. Int J Dermatol. 2013;52:567–71.

    Article  CAS  PubMed  Google Scholar 

  80. Ghannoum MA, Long L, Pfister WR. Determination of the efficacy of terbinafine hydrochloride nail solution in the topical treatment of dermatophytosis in a guinea pig model. Mycoses. 2009;52:35–43.

    Article  PubMed  CAS  Google Scholar 

  81. Iwata A, Watanabe Y, Kumagai N, et al. In vitro and in vivo assessment of dermatophyte acquired resistance to efinaconazole, a novel triazole antifungal. Antimicrob Agents Chemother. 2014;58:4920–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Knechtle P, Diefenbacher M, Greve KB, et al. The natural diyne–furan fatty acid EV-086 is an inhibitor of fungal delta-9 fatty acid desaturation with efficacy in a model of skin dermatophytosis. Antimicrob Agents Chemother. 2014;58:455–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Long L, Hager C, Ghannoum M. Evaluation of the efficacy of ME1111 in the topical treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother. 2016;60:2343–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Nicholas RO, Berry V, Hunter PA, Kelly JA. The antifungal activity of mupirocin. J Antimicrob Chemother. 1999;43:579–82.

    Article  CAS  PubMed  Google Scholar 

  85. Niwano Y, Kuzuhara N, Kodama H, et al. In vitro and in vivo antidermatophyte activities of NND-502, a novel optically active imidazole antimycotic agent. Antimicrob Agents Chemother. 1998;42:967–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Njateng GSS, Gatsing D, Mouokeu RS, Lunga PK, Kuiate J-R. In vitro and in vivo antidermatophytic activity of the dichloromethane-methanol (1:1 v/v) extract from the stem bark of Polyscias fulva Hiern (Araliaceae). BMC Complement Altern Med. 2013;13:95.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Hashiguchi T, Ryu A, Itoyama T, Uchida K, Yamaguchi H. Study of the effective dose of a topical antifungal agent, omoconazole nitrate, on the basis of percutaneous pharmacokinetics in guinea-pigs and mice. J Pharm Pharmacol. 1997;49:757–61.

    Article  CAS  PubMed  Google Scholar 

  88. Nagino K, Shimohira H, Ogawa M, Uchida K, Yamaguchi H. Comparison of the therapeutic efficacy of oral doses of fluconazole and itraconazole in a guinea pig model of dermatophytosis. J Infect Chemother. 2000;6:41–4.

    Article  CAS  PubMed  Google Scholar 

  89. Mieth H, Leitner I, Meingassner JG. The efficacy of orally applied terbinafine, itraconazole and fluconazole in models of experimental trichophytoses. J Med Vet Mycol. 1994;32:181–8.

    Article  CAS  PubMed  Google Scholar 

  90. Parmegiani RM, Loebenberg D, Cacciapuoti A, et al. Sch 39304, a new antifungal agent: oral and topical treatment of vaginal and superficial infections. J Med Vet Mycol. 1993;31:239–48.

    Article  CAS  PubMed  Google Scholar 

  91. Sugiura K, Sugimoto N, Hosaka S, et al. The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob Agents Chemother. 2014;58:3837–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Tatsumi Y, Yokoo M, Arika T, Yamaguchi H. In vitro antifungal activity of KP-103, a novel triazole derivative, and its therapeutic efficacy against experimental plantar tinea pedis and cutaneous candidiasis in guinea pigs. Antimicrob Agents Chemother. 2001;45:1493–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ghannoum MA, Long L, Kim HG, et al. Efficacy of terbinafine compared to lanoconazole and luliconazole in the topical treatment of dermatophytosis in a guinea pig model. Med Mycol. 2010;48:491–7.

    Article  CAS  PubMed  Google Scholar 

  94. Polak AM. Preclinical data and mode of action of amorolfine. Clin Exp Dermatol. 1992;17(Suppl 1):8–12.

    Article  PubMed  Google Scholar 

  95. Ohsumi K, Murai H, Nakamura I, Watanabe M, Fujie A. Therapeutic efficacy of AS2077715 against experimental tinea pedis in guinea pigs in comparison with terbinafine. J Antibiot. 2014;67:717–9.

    Article  CAS  PubMed  Google Scholar 

  96. Wakabayashi H, Uchida K, Yamauchi K, et al. Lactoferrin given in food facilitates dermatophytosis cure in guinea pig models. J Antimicrob Chemother. 2000;46:595–602.

    Article  CAS  PubMed  Google Scholar 

  97. Uchida K, Tanaka T, Yamaguchi H. Achievement of complete mycological cure by topical antifungal agent NND-502 in guinea pig model of tinea pedis. Microbiol Immunol. 2003;47:143–6.

    Article  CAS  PubMed  Google Scholar 

  98. Tatsumi Y, Yokoo M, Senda H, Kakehi K. Therapeutic efficacy of topically applied KP-103 against experimental tinea unguium in guinea pigs in comparison with amorolfine and terbinafine. Antimicrob Agents Chemother. 2002;46:3797–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gasparto AK, Baltazar LM, Gouveia LF, et al. 2-(Benzylideneamino)phenol: a promising hydroxyaldimine with potent activity against dermatophytoses. Mycopathologia. 2015;179:243–51.

    Article  CAS  PubMed  Google Scholar 

  100. Thomson MP, Anticevic CS, Rodríguez BH, Silva VV. In vitro antifungal susceptibility, in vivo antifungal activity and security from a natural product obtained from sunrise oil (AMO3) against dermatophytes. Rev Chilena Infectol. 2011;28:512–9.

    Article  Google Scholar 

  101. Baltazar LM, Werneck SMC, Carneiro HCS, et al. Photodynamic therapy efficiently controls dermatophytosis caused by Trichophyton rubrum in a murine model. Br J Dermatol. 2015;172:801–4.

    Article  CAS  PubMed  Google Scholar 

  102. Mignon BR, Leclipteux T, Focant C, et al. Humoral and cellular immune response to a crude exo-antigen and purified keratinase of Microsporum canis in experimentally infected guinea pigs. Med Mycol. 1999;37:123–9.

    Article  CAS  PubMed  Google Scholar 

  103. Vermout SM, Brouta FD, Descamps FF, Losson BJ, Mignon BR. Evaluation of immunogenicity and protective efficacy of a Microsporum canis metalloprotease subunit vaccine in guinea pigs. FEMS Immunol Med Microbiol. 2004;40:75–80.

    Article  CAS  PubMed  Google Scholar 

  104. Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med Mycol. 2001;39:463–8.

    Article  CAS  PubMed  Google Scholar 

  105. Baldo A, Tabart J, Vermout S, et al. Secreted subtilisins of Microsporum canis are involved in adherence of arthroconidia to feline corneocytes. J Med Microbiol. 2008;57:1152–6.

    Article  PubMed  Google Scholar 

  106. Bagut ET, Baldo A, Mathy A, et al. Subtilisin Sub3 is involved in adherence of Microsporum canis to human and animal epidermis. Vet Microbiol. 2012;160:413–9.

    Article  CAS  PubMed  Google Scholar 

  107. Hay RJ, Calderon RA, Mackenzie CD. Experimental dermatophytosis in mice: correlation between light and electron microscopic changes in primary, secondary and chronic infections. Br J Exp Pathol. 1988;69:703–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Tran VDT, De Coi N, Feuermann M, et al. RNA sequencing-based genome reannotation of the dermatophyte Arthroderma benhamiae and characterization of its secretome and whole gene expression profile during infection. mSystems. 2016. doi:10.1128/mSystems.00036-16.

  109. Hunjan BS, Silverman IH, Curlovic KM, et al. A simplified in vitro assay of delayed hypersensitivity in diagnosis of dermatomycoses. J Allergy Clin Immunol. 1981;67:485–94.

    Article  CAS  PubMed  Google Scholar 

  110. Descamps FF, Brouta F, Vermout SM, et al. A recombinant 31.5 kDa keratinase and a crude exo-antigen from Microsporum canis fail to protect against a homologous experimental infection in guinea pigs. Vet Dermatol. 2003;14:305–12.

    Article  PubMed  Google Scholar 

  111. Wakabayashi H, Takakura N, Yamauchi K, et al. Effect of lactoferrin feeding on the host antifungal response in guinea-pigs infected or immunised with Trichophyton mentagrophytes. J Med Microbiol. 2002;51:844–50.

    Article  CAS  PubMed  Google Scholar 

  112. Yoshikawa FSY, Ferreira LG, de Almeida SR. IL-1 signaling inhibits Trichophyton rubrum conidia development and modulates the IL-17 response in vivo. Virulence. 2015;6:449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. de Almeida SR. Immunology of dermatophytosis. Mycopathologia. 2008;166:277–83.

    Article  PubMed  Google Scholar 

  114. Mignon B, Tabart J, Baldo A, et al. Immunization and dermatophytes. Curr Opin Infect Dis. 2008;21:134–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Mignon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cambier, L., Heinen, MP. & Mignon, B. Relevant Animal Models in Dermatophyte Research. Mycopathologia 182, 229–240 (2017). https://doi.org/10.1007/s11046-016-0079-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-016-0079-3

Keywords

Navigation