Skip to main content
Log in

Hydrophobicity-Related Protein Contents and Surface Areas of Aerial Conidia are Useful Traits for Formulation Design of Fungal Biocontrol Agents

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

To clarify the potential use of hydrophobicity-related traits of aerial conidia in formulation design of fungal biocontrol agents, hydrophobicity rates (H r) and surface areas (S a) of aerial conidia were assessed with 48 strains of Beauveria bassiana, Isaria fumosorosea and Metarhizium spp. Inter- or intra-specific variation was large in H r (59.7–92.2%) and S a (7.9–25.3 μm2 conidium−1) measurements, which were significantly correlated (r 2 = 0.55). Six isolates of the three fungi with distinguished H r and S a were further studied. Conidial wall proteins of these isolates were sequentially extracted with sodium dodecyl sulfate (SDS), formic acid (FA) and trifluoroacetic acid (TFA). Their H r values were significantly correlated to the contents (P c) of TFA-soluble, but FA-insoluble, proteins (2.7–44.8 μg per 107 conidia; r 2 = 0.79) and reduced drastically by the FA/TFA treatments, which eliminated the hydrophobin-based rodlet layers of conidial surfaces. However, the SDS treatments had no effect on either H r or rodlet layers. The dispersancy of a tested emulsifier to oil formulations of the six isolates in water was adversely correlated to their H r (r 2 = 0.94). The results indicate that both P c and S a are inherent hydrophobicity-related traits and can be utilized to select fungal biocontrol candidates for improved formulation and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Feng MG, Poprawski TJ, Khachatourians GG. Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Technol. 1994;4:3–34.

    Article  Google Scholar 

  2. Roberts DW, St Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol. 2004;54:1–70.

    Article  CAS  PubMed  Google Scholar 

  3. de Faria MR, Wraight SP. Mycoinsecticides and Mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control. 2007;43:237–56.

    Article  Google Scholar 

  4. Ye SD, Ying SH, Chen C, Feng MG. New solid-state fermentation chamber for bulk production of aerial conidia of fungal biocontrol agents on rice. Biotechnol Lett. 2006;28:799–804.

    Article  CAS  PubMed  Google Scholar 

  5. Beever RE, Dempsey GP. Function of rodlets on the superficial of fungal spores. Nature. 1978;272:608–10.

    Article  CAS  PubMed  Google Scholar 

  6. Boucias DG, Pendland JC, Latge JP. Nonspecific factors involved in attachment of entomopathogenic deuteromycetes to host insect cuticle. Appl Environ Microbiol. 1988;54:1795–805.

    CAS  PubMed  Google Scholar 

  7. Bidochka MJ, St Leger RJ, Joshi L, Roberts DW. An inner cell wall protein (cwp1) from conidia of the entomopathogenic fungus Beauveria bassiana. Microbiol-SGM. 1995;141:1075–80.

    Article  CAS  Google Scholar 

  8. Wösten HAB. Hydrophobins: multipurpose proteins. Annu Rev Microbiol. 2001;55:625–46.

    Article  PubMed  Google Scholar 

  9. Wang C, Leger RJS. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses. Proc Natl Acad Sci USA. 2006;103:6647–52.

    Article  CAS  PubMed  Google Scholar 

  10. Pitarch A, Nombela C, Gil C. Collection of proteins secreted from yeast protoplasts in active cell wall regeneration. Methods Mol Biol. 2008;425:241–63.

    Article  CAS  PubMed  Google Scholar 

  11. Wessels JGH, de Vries OMH, Ásgeirsdóttir SA, Schuren FHJ. Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in Schizophyllum. Plant Cell. 1991;3:793–9.

    Article  CAS  PubMed  Google Scholar 

  12. Wessels JGH, de Vries OMH, Ásgeirsdóttir SA, Springer J. The thn mutation of Schizophyllum commune, which suppresses formation of aerial hyphae, affects expression of the Sc3 hydrophobin gene. J Gen Microbiol. 1991;137:2439–45.

    CAS  PubMed  Google Scholar 

  13. de Vries OMH, Fekkes MP, Wösten HAB, Wessels JGH. Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungi. Arch Microbiol. 1993;159:330–5.

    Article  Google Scholar 

  14. Bidochka MJ, St Leger RJ, Joshi L, Roberts DW. The rodlet layer from aerial and submerged conidia of the entomopathogenic fungus Beauveria bassiana contains hydrophobin. Mycol Res. 1995;99:403–6.

    Article  CAS  Google Scholar 

  15. Jeffs LB, Xavier IJ, Matai RE, Khachatourians GG. Relationships between fungal spore morphologies and superficial properties for entomopathogenic members of the genera Beauveria, Metarhizium, Paecilomyces, Tolypocladium, and Verticillium. Can J Microbiol. 1999;45:936–48.

    Article  CAS  Google Scholar 

  16. Cho EM, Kirkland BH, Holder DJ, Keyhani NO. Phage display cDNA cloning and expression analysis of hydrophobins from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiol-SGM. 2007;153:3438–47.

    Article  CAS  Google Scholar 

  17. St Leger RJ, Staples RC, Roberts DW. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae. Gene. 1992;120:119–24.

    Article  CAS  PubMed  Google Scholar 

  18. Bidochka MJ, Kamp AM, Lavender TM, Dekoning J, de Croos JN. Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species? Appl Environ Microbiol. 2001;67:1335–42.

    Article  CAS  PubMed  Google Scholar 

  19. Fargues J. Adhesion of the fungal spore to the insect cuticle in relation to pathogenicity. In: Roberts DW, Aist JR, editors. Infection processes of fungi. New York: Rockefeller Foundation; 1984. p. 90–110.

    Google Scholar 

  20. Holder DJ, Keyhani NO. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata. Appl Environ Microbiol. 2005;71:5260–6.

    Article  CAS  PubMed  Google Scholar 

  21. Doyle RJ. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2000;2:391–400.

    Article  CAS  PubMed  Google Scholar 

  22. Girardin H, Paris S, Rault J, Bellon-Fontaine MN, Latgé JP. The role of the rodlet structure on the physicochemical properties of Aspergillus conidia. Lett Appl Microbiol. 1999;29:364–9.

    Article  CAS  PubMed  Google Scholar 

  23. Holder DJ, Kirkland BH, Lewis MW, Keyhani NO. Superficial characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiol-SGM. 2007;153:3448–57.

    Article  CAS  Google Scholar 

  24. Shah FA, Allen N, Wright CJ, Butt TM. Repeated in vitro subculturing alters spore superficial properties and virulence of Metarhizium anisopliae. FEMS Microbiol Lett. 2007;276:60–6.

    Article  CAS  PubMed  Google Scholar 

  25. Pu ZL, Li ZZ. Insect mycology. Anhui, China: Anhui Publishing House of Science and Technology; 1996.

    Google Scholar 

  26. Jin SF, Feng MG, Chen JQ. Selection of global Metarhizium isolates for the control of the rice pest Nilaparvata lugens (Homoptera: Delphacidae). Pest Manag Sci. 2008;64:1008–14.

    Article  CAS  PubMed  Google Scholar 

  27. Shi WB, Zhang L, Feng MG. Time-concentration-mortality responses of carmine spider mite (Acari: Tetranychidae) females to biocontrol agents of three hypocrealean fungi in a standardized bioassay system. Biol Control. 2008;46:495–501.

    Article  Google Scholar 

  28. Feng MG, Pu XY, Ying SH, Wang YG. Field trials of an oil-based emulsifiable formulation of Beauveria bassiana conidia and low application rates of imidacloprid for control of false-eye leafhopper Empoasca vitis on tea in southern China. Crop Prot. 2004;23:489–96.

    Article  CAS  Google Scholar 

  29. Shi WB, Feng MG. Field efficacy of application of Beauveria bassiana formulation and low rate pyridaben for sustainable control of citrus red mite Panonychus citri (Acari: Tetranychidae) in orchards. Biol Control. 2006;39:210–7.

    Article  CAS  Google Scholar 

  30. Shi WB, Zhang LL, Feng MG. Field trials of four formulations of Beauveria bassiana and Metarhizium anisoplae for control of cotton spider mites (Acari: Tetranychidae) in the Tarim Basin of China. Biol Control. 2008;45:48–55.

    Article  Google Scholar 

  31. Ying SH, Feng MG. Relationship between thermotolerance and hydrophobin-like proteins in aerial conidia of Beauveria bassiana and Paecilomyces fumosoroseus as fungal biocontrol agents. J Appl Microbiol. 2004;97:323–31.

    Article  CAS  PubMed  Google Scholar 

  32. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75.

    CAS  PubMed  Google Scholar 

  33. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  34. Tang QY, Feng MG. DPS data processing system: experimental design, statistical analysis and data mining. Beijing, China: Science Press; 2007.

    Google Scholar 

  35. Rangel DEN, Braga GUL, Anderson AJ, Roberts DW. Variability in conidial thermotolerance of Metarhizium anisopliae stains from different geographic origins. J Invertebr Pathol. 2005;88:116–25.

    Article  PubMed  Google Scholar 

  36. Li J, Feng MG. Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycol Res. 2009;113:93–9.

    Article  PubMed  Google Scholar 

  37. Braga GUL, Flint SD, Miller CD, Anderson AJ, Roberts DW. Variability in response to UV-B among species and strains of Metarhizium isolated from sites at latitudes from 61°N to 54°S. J Inverteb Pathol. 2001;78:98–108.

    Article  CAS  Google Scholar 

  38. Fernandes ÉKK, Rangel DEN, Moraes ÁML, Bittencourt VREP, Roberts DW. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. J Invertebr Pathol. 2007;96:237–43.

    Article  CAS  PubMed  Google Scholar 

  39. Huang BF, Feng MG. Comparative tolerances of various Beauveria bassiana isolates to UV-B radiation with a description of a modeling method to assess lethal dose. Mycopathologia. 2009;168:145–52.

    Article  PubMed  Google Scholar 

  40. Zou G, Ying SH, Shen ZC, Feng MG. Multi-sited mutations of beta-tubulin are involved in benzimidazole resistance and thermotolerance of fungal biocontrol agent Beauveria bassiana. Environ Microbiol. 2006;8:2096–105.

    Article  CAS  PubMed  Google Scholar 

  41. Feng MG, Chen B, Ying SH. Trials of Beauveria bassiana, Paecilomyces fumosoroseus and imidacloprid for management of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) on greenhouse grown lettuce. Biocontrol Sci Technol. 2004;14:531–44.

    Article  Google Scholar 

  42. Pu XY, Feng MG, Shi CH. Impact of three application methods on the field efficacy of Beauveria bassiana-based mycoinsecticide against the false-eye leafhopper, Empoasca vitis (Homoptera: Cicadellidae) in the tea canopy. Crop Prot. 2005;24:167–75.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Humber RA (RW Holley Center for Agriculture and Health, Ithaca, NY, USA) for providing ARSEF fungal isolates. Funding of this study was provided jointly by the Ministry of Science and Technology of China (2009CB118904 and 2007DFA3100) and the Zhejiang R&D Program (2007C12035, 2008C12057 and 2008C02007-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Guang Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, LT., Wang, ZL., Ying, SH. et al. Hydrophobicity-Related Protein Contents and Surface Areas of Aerial Conidia are Useful Traits for Formulation Design of Fungal Biocontrol Agents. Mycopathologia 169, 483–494 (2010). https://doi.org/10.1007/s11046-010-9283-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-010-9283-8

Keywords

Navigation