Skip to main content
Log in

Variability of the Mitochondrial SSU rDNA of Nomuraea Species and Other Entomopathogenic Fungi from Hypocreales

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Hypocrealean arthropod pathogenic fungi have profound impact on the regulation of agricultural and medical pests. However, until now the genetic and phylogenetic relationships among species have not been clarified, such studies could clarify host specificity relationships and define species boundaries. Our purpose was to compare the sequences of the mitochondrial SSU rDNA fragments from several mitosporic entomopathogenic Hypocreales to infer relationships among them and to evaluate the possibility to use these sequences as species diagnostic tool in addition to the more commonly studied sequences of nuclear SSU rDNA. The SSU mt-rDNA proved to be useful to help in differentiation of species inside several genera. Clusters obtained with Parsimony, Bayesian, and Maximum Likelihood analyses were congruent with a new classification of the Clavicipitaceae (Sung et al. Stud Mycol. 2007;57:5–59) in which the anamorphic genera Nomuraea and Metarhizium species remain in the Clavicipitaceae and Isaria species sequenced here are assigned to the family Cordycipitaceae. Mitochondrial genomic information indicates the same general pattern of relationships demonstrated by nuclear gene sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kish LP, Allen GE. The Biology and Ecology of Nomuraea rileyi and a program for predicting its incidence on Anticarsia gemmatalis in soybean. Tech Bull. 1978;795:1–48.

    Google Scholar 

  2. Lacey LA, Goettel MS. Current developments in microbial control of insect pests and prospects for the early 21st century. Entomophaga. 1995;40(1):3–27. doi:10.1007/BF02372677.

    Article  Google Scholar 

  3. Alves SB, editor. Controle microbiano de insetos. 2nd ed. Piracicaba: FEALQ; 1998.

    Google Scholar 

  4. Van Der Geest LPS, Elliot SL, Breeuwer JAJ, Beerling EAM. Diseases of mites. Exp Appl Acarol. 2000;24:497–560. doi:10.1023/A:1026518418163.

    Article  PubMed  Google Scholar 

  5. Luangsa-ard JJ, Hywel-Jones NL, Manoch L, Samson RA. On the relationships of Paecilomyces sect. Isarioidea species. Mycol Res. 2005;109:581–9. doi:10.1017/S0953756205002741.

    Article  PubMed  CAS  Google Scholar 

  6. Kalkar O, Carner GR, Scharf D, Boucias DG. Characterization of an Indonesian isolate of Paecilomyces reniformis. Mycopathologia. 2006;161:109–18. doi:10.1007/s11046-005-0133-z.

    Article  PubMed  CAS  Google Scholar 

  7. Nikoh N, Fukatsu T. Interkingdom hosts jumping underground: phylogenetic analysis of entomoparasitic fungi of the genus Cordyceps. Mol Biol Evol. 2000;17:629–38.

    PubMed  CAS  Google Scholar 

  8. Artjariyasripong S, Mitchell J, Hywel-Jones NL, Jones EBG. Relationship of the genus Cordyceps and related genera, based on parsimony and spectral analysis of partial 18S and 28S ribosomal gene sequences. Mycoscience. 2001;42:503–17. doi:10.1007/BF02460949.

    Article  CAS  Google Scholar 

  9. Pantou M, Mavridou A, Typas M. IGS sequences variation, group-I introns and the complete nuclear ribosomal DNA of the entomopathogenic fungus Metarhizium: excellent tool for isolate detection and phylogenetic analysis. Fungal Genet Biol. 2003;38:159–74. doi:10.1016/S1087-1845(02)00536-4.

    Article  PubMed  CAS  Google Scholar 

  10. Stensrud O, Hywel-Jones NL, Schumacher T. Towards a phylogenetic classification of Cordyceps: ITS nrDNAsequence data confirm divergent lineages and paraphyly. Mycol Res. 2005;109:41–56. doi:10.1017/S095375620400139X.

    Article  PubMed  CAS  Google Scholar 

  11. Inglis PW, Tigano MS. Identification and taxonomy of some entomopathogenic Paecilomyces spp. (Ascomycota) isolates using rDNA-ITS sequences. Genet Mol Biol. 2006;29:132–6. doi:10.1590/S1415-47572006000100025.

    Article  CAS  Google Scholar 

  12. Driver F, Milner RJ, Trueman WH. A taxonomic revision of Metarhizium based on a phylogenetic analysis of rDNA sequence data. Mycol Res. 2000;104:134–50. doi:10.1017/S0953756299001756.

    Article  CAS  Google Scholar 

  13. Nikoh N, Fukatsu T. Evolutionary dynamics of multiple group-I introns in nuclear ribosomal RNA genes of endoparasitic fungi of the Genus Cordyceps. Mol Biol Evol. 2001;18:1631–42.

    PubMed  CAS  Google Scholar 

  14. Moncalvo JM, Drehmel D, Vilgalys R. Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita (Agaricales, Basidiomycota): phylogenetic implications. Mol Phylogenet Evol. 2000;16:48–63. doi:10.1006/mpev.2000.0782.

    Article  PubMed  CAS  Google Scholar 

  15. Skovgaard K, Rosendahl S, O’Donnell K, Nirenberg HI. Fusarium commune is a new species identified by morphological and molecular phylogenetic data. Mycologia. 2003;95:630–6. doi:10.2307/3761939.

    Article  Google Scholar 

  16. Sosa-Gómez DR. Fungos Entomopatogênicos: Catálogo de Isolados. Série Documentos. Embrapa Soja. 2002;188:1–32.

    Google Scholar 

  17. Humber RA, Hansen K. Collection of entomopathogenic fungal cultures. Catalog of isolates, USDA-ARS, Ithaca, NY: 2005. http://arsef.fpsnl.cornell.edu/. Accessed 28 Mar 2008.

  18. Rogers SO, Bendich AJ. Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS, editors. Plant Molecular Biology Manual, vol. A6. Dordrecht: Kluwer Academic Publishers; 1988. p. 1–10.

    Google Scholar 

  19. White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications––a laboratory manual. New York: Academic Press; 1990. p. 315–22.

    Google Scholar 

  20. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80. doi:10.1093/nar/22.22.4673.

    Article  PubMed  CAS  Google Scholar 

  21. Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24:1596–9. doi:10.1093/molbev/msm092.

    Article  PubMed  CAS  Google Scholar 

  22. Kumar S, Filipski A. Multiple sequence alignment: in pursuit of homologous DNA positions. Genome Res. 2007;17:127–35. doi:10.1101/gr.5232407.

    Article  PubMed  CAS  Google Scholar 

  23. Hall BG. Phylogenetic trees made easy: a how-to manual, vol. 3. Sunderland, MA: Sinauer Associates; 2008.

    Google Scholar 

  24. Swofford DL. PAUP*: phylogenetic analysis using parsimony (* and other methods). Sunderland, MA: Sinauer Associates; 2002.

    Google Scholar 

  25. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001;17:754–5. doi:10.1093/bioinformatics/17.8.754.

    Article  PubMed  CAS  Google Scholar 

  26. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by Maximum Likelihood. Syst Biol. 2003;52:696–704. doi:10.1080/10635150390235520.

    Article  PubMed  Google Scholar 

  27. Felsenstein J. Confidence-limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91. doi:10.2307/2408678.

    Article  Google Scholar 

  28. Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14:817–8. doi:10.1093/bioinformatics/14.9.817.

    Article  PubMed  CAS  Google Scholar 

  29. Rodríguez F, Oliver JL, Marín A, Medina JR. The general stochastic model of nucleotide substitution. J Theor Biol. 1990;142:485–501. doi:10.1016/S0022-5193(05)80104-3.

    Article  PubMed  Google Scholar 

  30. Kouvelis VN, Ghikas DV, Typas MA. The analysis of the complete mitochondrial genome of Lecanicillium muscarium (synonym Verticillium lecanii) suggests a minimum common gene organization in mt-DNAs of Sordariomycetes: phylogenetic implications. Fungal Genet Biol. 2004;41:930–40. doi:10.1016/j.fgb.2004.07.003.

    Article  PubMed  CAS  Google Scholar 

  31. Boucias DG, Tigano MS, Sosa-Gómez DR, Glare TR, Inglis PW. Genotypic and phenotypic properties of the invertebrate mycopathogen Nomuraea rileyi. Biol Control. 2000;19:124–38. doi:10.1006/bcon.2000.0857.

    Article  CAS  Google Scholar 

  32. Han Q, Inglis GD, Hausner G. Phylogenetic relationships among strains of the entomopathogenic fungus Nomuraea rileyi, as revealed by partial β-tubulin sequences and inter-simple sequence repeat (ISSR) analysis. Lett Appl Microbiol. 2002;34:376–83. doi:10.1046/j.1472-765X.2002.01103.x.

    Article  PubMed  CAS  Google Scholar 

  33. Suwannakut S, Boucias DG, Wiwat C. Genotypic analysis of Nomuraea rileyi collected from various noctuid hosts. J Invertebr Pathol. 2005;90:169–76. doi:10.1016/j.jip.2005.08.010.

    Article  PubMed  CAS  Google Scholar 

  34. Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol. 2007;57:5–59.

    Article  PubMed  Google Scholar 

  35. Rakotonirainy MS, Dutertre M, Brygoo Y, Riba G. rRNA sequence comparison of Beauveria bassiana, Tolypocladium cylindrosporum, and Tolypocladium extinguens. J Invertebr Pathol. 1991;57:17–22. doi:10.1016/0022-2011(91)90036-P.

    Article  PubMed  CAS  Google Scholar 

  36. Huang B, Li SG, Li Cr, Fan MZ, Li ZZ. Studies on the taxonomy status of Metarhizium cylindrospora and Nomuraea viridula. Mycosystema. 2004;23:33–7.

    CAS  Google Scholar 

  37. Ghikas DV, Kouvelis VN, Typas MA. The complete mitochondrial genome of the entomopathogenic fungus Metarhizium anisopliae var. anisopliae: gene order and trn gene clusters reveal a common evolutionary course for all Sordariomycetes, while intergenic regions show variation. Arch Microbiol. 2006;185:393–401. doi:10.1007/s00203-006-0104-x.

    Article  PubMed  CAS  Google Scholar 

  38. Kouvelis VN, Sialakouma A, Typas MA. Mitochondrial gene sequences alone or combined with ITS region sequences provide firm molecular criteria for the classification of Lecanicillium species. Mycol Res. 2008;112:829–44. doi:10.1016/j.mycres.2008.01.016.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) from Brazil and USDA Agricultural Research Service (Ithaca, New York). We wish to acknowledge John Vandenberg for allowing to use his facilities, Drion G. Boucias for the critical review of the manuscript and providing some N. rileyi isolates, Karen Hansen and Louela Castrillo for helping with laboratory work. DRSG thanks CNPq (Project 490348/2004-1 and fellowship 303997/2004–4) and KLSB thanks CNPq (fellowship 151004/2005–6) and Fundação de Amparo à Pesquisa––FAPESP (grants #06/60127–0 and #07/53919–0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Sosa-Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosa-Gómez, D.R., Humber, R.A., Hodge, K.T. et al. Variability of the Mitochondrial SSU rDNA of Nomuraea Species and Other Entomopathogenic Fungi from Hypocreales. Mycopathologia 167, 145–154 (2009). https://doi.org/10.1007/s11046-008-9157-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-008-9157-5

Keywords

Navigation