Skip to main content
Log in

Dynamic modelling and analysis for a flexible brush sampling mechanism

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Sampling asteroid soil is one of the main tasks of asteroid exploration projects. The dynamic analysis for sampling with a flexible brush is of great interest in aerospace engineering. It is a typical dynamic problem of multi-body systems, including the flexibility of structure, granular material, the contact impact among the rigid bodies, flexible bodies, and granular matters, as well as the contact detection algorithm. To solve such a problem, this paper presents a strong coupling modelling method for the rigid bodies and the large deformed beams in interaction with the granular matter to simulate the sampling process. The absolute nodal coordinate (ANCF) Euler–Bernoulli beam element is adopted to discretize the flexible beams, while the motions of the rigid bodies and the particles are described by the Cartesian coordinates. A multi-level contact detection method is proposed to improve the simulation efficiency. The nonlinear continuous impact force model and velocity-based friction model are employed to describe the normal contact force and the tangential friction force, respectively. The coupling dynamic equations are solved simultaneously to achieve high precision. The dynamic model is verified via comparison with the commercial software on a benchmark problem. Finally, the dynamic performance of the flexible brush sampling mechanism is investigated, and the effects of structural parameters on sampling results are analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Ji, S., Liu, L.: Computational Granular Mechanics and Its Engineering Applications. Springer, Singapore (2020)

    Book  Google Scholar 

  2. Shabana, A.A.: Computational Continuum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  3. Fan, W., Ren, H., Zhu, W., Zhu, H.: Dynamic analysis of power transmission lines with ice-shedding using an efficient absolute nodal coordinate beam formulation. J. Comput. Nonlinear Dyn. 16(1), 011005 (2021)

    Article  Google Scholar 

  4. Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  5. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

  6. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal coordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  7. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006)

    Article  MATH  Google Scholar 

  8. Von Dombrowski, S.: Analysis of large flexible body deformation in multibody systems using absolute coordinates. Multibody Syst. Dyn. 8(4), 409–432 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cheng, L., Qiang, T., Dong, Y., Hu, H.: Dynamic analysis of membrane systems undergoing overall motions, large deformations and wrinkles via thin shell elements of ANCF. Comput. Methods Appl. Mech. Eng. 258, 81–95 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Htun, T.Z., Suzuki, H., Garcia-Vallejo, D.: Dynamic modeling of a radially multilayered tether cable for a remotely-operated underwater vehicle (ROV) based on the absolute nodal coordinate formulation (ANCF). Mech. Mach. Theory 153, 103961 (2020)

    Article  Google Scholar 

  11. Tang, L., Liu, J.: Frictional contact analysis of sliding joints with clearances between flexible beams and rigid holes in flexible multibody systems. Multibody Syst. Dyn. 49(2), 155–179 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yuan, T., Liu, Z., Zhou, Y., Liu, J.: Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment. Multibody Syst. Dyn. 50(1), 1–24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cui, Y.Q., Lan, P., Zhou, H.T., Yu, Z.Q.: The rigid-flexible-thermal coupled analysis for spacecraft carrying large-aperture paraboloid antenna. J. Comput. Nonlinear Dyn. 15(3), 031003 (2020)

    Article  Google Scholar 

  14. Bustamante, D., Jerves, A.X., Pazmino, S.A.: A generalized three-dimensional discrete element method with electrostatic induced cohesion. Granul. Matter 22(4), 90 (2020)

    Article  Google Scholar 

  15. Lai, Z.S., Chen, Q.S., Huang, L.C.: Fourier series-based discrete element method for computational mechanics of irregular-shaped particles. Comput. Methods Appl. Mech. Eng. 362, 112973 (2020)

    Article  MathSciNet  Google Scholar 

  16. Zhao, S.W., Zhao, J.D., Lai, Y.M.: Multiscale modeling of thermo-mechanical responses of granular materials: a hierarchical continuum-discrete coupling approach. Comput. Methods Appl. Mech. Eng. 367, 113100 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, K., Sun, W.C.: An updated Lagrangian LBM-DEM-FEM coupling model for dual-permeability fissured porous media with embedded discontinuities. Comput. Methods Appl. Mech. Eng. 344, 276–305 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Michael, M., Vogel, F., Peters, B.: DEM-FEM coupling simulations of the interactions between a tire tread and granular terrain. Comput. Methods Appl. Mech. Eng. 289, 227–248 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liu, T., Fleck, N.A., Wadley, H.N.G., Deshpande, V.S.: The impact of sand slugs against beams and plates: coupled discrete particle/finite element simulations. J. Mech. Phys. Solids 61(8), 1798–1821 (2013)

    Article  Google Scholar 

  20. Ericson, C.: Real-Time Collision Detection. Morgan Kaufmann Publishers, Amsterdam (2005)

    Google Scholar 

  21. Oldenburg, M., Nilsson, L.: The position code algorithm for contact searching. Int. J. Numer. Methods Eng. 37(3), 359–386 (1994)

    Article  MATH  Google Scholar 

  22. Gay Neto, A., Pimenta, P.M., Wriggers, P.: A master-surface to master-surface formulation for beam to beam contact. Part I: frictionless interaction. Comput. Methods Appl. Mech. Eng. 303, 400–429 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zavarise, G., Wriggers, P.: Contact with friction between beams in 3-D space. Int. J. Numer. Methods Eng. 49(8), 977–1006 (2000)

    Article  MATH  Google Scholar 

  24. Meier, C., Popp, A., Wall, W.A.: A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Comput. Methods Appl. Mech. Eng. 308, 377–413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Meier, C., Wall, W.A., Popp, A.: A unified approach for beam-to-beam contact. Comput. Methods Appl. Mech. Eng. 315, 972–1010 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Durville, D.: Contact-friction modeling within elastic beam assemblies: an application to knot tightening. Comput. Mech. 49(6), 687–707 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wriggers, P.: Computational Contact Mechanics. Springer, Berlin (2006)

    Book  MATH  Google Scholar 

  28. Bozorgmehri, B., Yu, X., Matikainen, M.K., Harish, A.B., Mikkola, A.: A study of contact methods in the application of large deformation dynamics in self-contact beam. Nonlinear Dyn. 103, 581–616 (2021)

    Article  Google Scholar 

  29. Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Eng. 358, 112635 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pennestri, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016)

    Article  MATH  Google Scholar 

  31. Liu, C., Yu, Z., Zhao, S.: Quantifying the impact of a debris avalanche against a flexible barrier by coupled DEM-FEM analyses. Landslides 17(1), 33–47 (2020)

    Article  Google Scholar 

  32. Gay Neto, A., Campello, E.M.B.: Granular materials interacting with thin flexible rods. Comput. Part. Mech. 4(2), 229–247 (2016)

    Article  Google Scholar 

  33. Recuero, A., Serban, R., Peterson, B., Sugiyama, H., Jayakumar, P., Negrut, D.: A high-fidelity approach for vehicle mobility simulation: nonlinear finite element tyres operating on granular material. J. Terramech. 72, 39–54 (2017)

    Article  Google Scholar 

  34. Docquier, N., Lantsoght, O., Dubois, F., Brüls, O.: Modelling and simulation of coupled multibody systems and granular media using the non-smooth contact dynamics approach. Multibody Syst. Dyn. 49(2), 181–202 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zheng, Z.M., Zang, M.Y., Chen, S.H., Zhao, C.L.: An improved 3D DEM-FEM contact detection algorithm for the interaction simulations between particles and structures. Powder Technol. 305, 308–322 (2017)

    Article  Google Scholar 

  36. Wriggers, P., Zavarise, G.: On contact between 3-dimensional beams undergoing large deflections. Commun. Numer. Methods Eng. 13(6), 429–438 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zienkiewicz, O.C., Taylor, R.L.: Finite Element Method Volume 2: Solid Mechanics, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

  38. Bauchau, O.A., Craig, J.I.: Structural Analysis with Application to Aerospace Structures. Springer, Dordrecht (2009)

    Google Scholar 

  39. Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318(3), 461–487 (2008)

    Article  Google Scholar 

  40. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn & Bacon, Boston (1989)

    Google Scholar 

  41. Hunt, K.H., Crossley, F.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Article  Google Scholar 

  42. Géradin, M., Cardona, A.: Flexible Multibody Dynamics: A Finite Element Approach. Wiley, Chichester (2001)

    Google Scholar 

  43. Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha \) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18(2), 185–202 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sanborn, G., Choi, J., Choi, J.H.: Strategy for co-simulation of multi-flexible-body dynamics and the discrete element method. J. Mech. Sci. Technol. 35, 4363–4380 (2021)

    Article  Google Scholar 

Download references

Acknowledgement

This research was supported by the National Natural Science Foundation of China under Grants Nos. 11932001, 12272221, for which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyang Liu.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, B., Ma, Z., Liu, J. et al. Dynamic modelling and analysis for a flexible brush sampling mechanism. Multibody Syst Dyn 56, 335–365 (2022). https://doi.org/10.1007/s11044-022-09848-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-022-09848-7

Keywords

Navigation