Skip to main content
Log in

A regularized approach for frictional impact dynamics of flexible multi-link manipulator arms considering the dynamic stiffening effect

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The present study offers a regularized approach for multi-link flexible manipulator arms with frictional impacts. The complex risks of global dynamics simulation, which involve nonlinear frictional impact, stick–slip, and foreshortening deformation, as well as multi-scale numerical problems, were implemented. The system is described as an assembly of \(n\) flexible links connected by \(n\) rotary joints. The stretching, bending, and the torsional deformations of the flexible links were considered in addition to the flexibility and mass of the joint. The introduction of a contact force potential energy approach transformed the non-differentiable functions of the normal and tangential frictions into differentiable ones, thereby generating Lagrange equations for the general recursive formulation of the systems. A numerical simulation for the double pendulum and spatial manipulator arms collision with targets was generated, thereby allowing the calculation of the frequent switching between the stick/sliding and forward/backward sliding. Several normal contact and friction models were adopted, and their corresponding results were analyzed. The generated ordinary differential equations of the proposed smoothed algorithm were solved using explicit solvers to verify any improvements in the global computational efficiency of the frictional collision dynamics for the flexible manipulator arms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Hunter, J.A., Ussher, T.H., Gossain, D.M.: Structural dynamic design considerations of the shuttle remote manipulator system. In: AIAA 23rd SDM Conf. Proc. No. 82-0762 (1982)

    Google Scholar 

  2. Piedboeuf, J.C., Doyon, M., L’Archevêque, R., et al.: Simulation Environments for Space Robot Design and Verification. ASTRA (2000)

    Google Scholar 

  3. Nguyen, P.K., Ravindran, R., Carr, R., et al.: Structural flexibility of the shuttle remote manipulator system mechanical arm. In: Proceedings of Guidance and Control Conference, pp. 246–256 (1982)

    Google Scholar 

  4. Book, W.J.: Recursive Lagrangian dynamics of flexible manipulator arms. Int. J. Robot. Res. 3(3), 87–101 (1984)

    Article  MathSciNet  Google Scholar 

  5. Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002)

    Article  MATH  Google Scholar 

  6. Kane, T.R., Ryan, R.R., Banerjee, A.K.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10(2), 139–151 (1987)

    Article  Google Scholar 

  7. Glocker, C.: Energetic consistency conditions for standard impacts. Multibody Syst. Dyn. 29(1), 77–117 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Wu, S.C., Haug, E.J.: Geometric nonlinear substructure for dynamics of flexible mechanical systems. Int. J. Numer. Methods Eng. 26(10), 2211–2226 (1988)

    Article  MATH  Google Scholar 

  9. Mayo, J.M., Garcia-Vallejo, D., Dominguez, J.: Study of the geometric stiffening effect: comparison of different formulations. Multibody Syst. Dyn. 11(4), 321–341 (2004)

    Article  MATH  Google Scholar 

  10. Ryu, J., Kim, S.S., Kim, S.S.: A criterion on inclusion of stress stiffening effects in flexible multibody dynamic system simulation. Comput. Struct. 62(6), 1035–1048 (1997)

    Article  MATH  Google Scholar 

  11. Liu, J.Y., Lu, H.: Rigid–flexible coupling dynamics of three dimensional hub-beams system. Multibody Syst. Dyn. 18(4), 487–510 (2007)

    Article  MATH  Google Scholar 

  12. Chenut, X., Fisette, P., Samin, J.C.: Recursive formalism with a minimal dynamic parameterization for the identification and simulation of multibody systems. Application to the human body. Multibody Syst. Dyn. 8(2), 117–140 (2002)

    Article  MATH  Google Scholar 

  13. Bauchau, O.A., Bottasso, C.L., Trainelli, L.: Robust integration schemes for flexible multibody systems. Comput. Methods Appl. Mech. Eng. 192(3), 395–420 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Geike, T., McPhee, J.: Inverse dynamic analysis of parallel manipulators with full mobility. Mech. Mach. Theory 38(6), 549–562 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lugrís, U., Naya, M.A., Pérez, J.A., Cuadrado, J.: Implementation and efficiency of two geometric stiffening approaches. Multibody Syst. Dyn. 20(2), 147–161 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Stewart, D.E., Trinkle, J.C.: An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and Coulomb friction. Int. J. Numer. Methods Eng. 39, 2673–2691 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Moreau, J.J.: Quadratic programming in mechanics: dynamics of one-sided constraints. SIAM J. Control 4(1), 153–158 (1966)

    Article  MathSciNet  Google Scholar 

  18. Khulief, Y.A., Shabana, A.A.: A continuous force model for the impact analysis of flexible multibody systems. Mech. Mach. Theory 22(3), 213–224 (1987)

    Article  Google Scholar 

  19. Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112(3), 369–376 (1990)

    Google Scholar 

  20. Wriggers, P., Krstulovic-Opara, L., Korelc, J.: Smooth \(C^{1}\)-interpolations for two-dimensional frictional contact problems. Int. J. Numer. Methods Eng. 51(12), 1469–1495 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Glowinski, R., Lions, J.L., Tremoliere, R.: Numerical Analysis of Variational Inequalities. Elsevier, Amsterdam (2011)

    Google Scholar 

  22. Martins, J.A.C., Oden, J.T.: A numerical analysis of a class of problems in elastodynamics with friction. Comput. Methods Appl. Mech. Eng. 40(3), 327–360 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  23. Seifried, R., Schiehlen, W., Eberhard, P.: Numerical and experimental evaluation of the coefficient of restitution for repeated impacts. Int. J. Impact Eng. 32(1), 508–524 (2005)

    Article  Google Scholar 

  24. Miller, A., Allen, P.K.: Graspit!: a versatile simulator for robotic grasping. IEEE Robot. Autom. Mag. 11(4), 110–122 (2004)

    Article  Google Scholar 

  25. Whittaker, E.T.: A Treatise on the Analytical Dynamics of Particles and Rigid Bodies: With an Introduction to the Problem of Three Bodies. CUP Archive, Cambridge (1970)

    Google Scholar 

  26. Kane, T.R.: A dynamics puzzle. Stanf. Mech. Alumni Club Newsl. 6, 1–4 (1984)

    Google Scholar 

  27. Brach, R.M.: Mechanical Impact Dynamics, Rigid Body Collisions. Wiley, New York (2007)

    Google Scholar 

  28. Stronge, W.J.: Smooth dynamics of oblique impact with friction. Int. J. Impact Eng. 51, 36–49 (2013)

    Article  Google Scholar 

  29. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  30. Gonthier, Y., McPhee, J., Lange, C., et al.: A regularized contact model with asymmetric damping and dwell-time dependent friction. Multibody Syst. Dyn. 11(3), 209–233 (2004)

    Article  MATH  Google Scholar 

  31. Bauchau, O.A., Ju, C.: Modeling friction phenomena in flexible multibody dynamics. Comput. Methods Appl. Mech. Eng. 195(50), 6909–6924 (2006)

    Article  MATH  Google Scholar 

  32. Pereira, C., Ambrósio, J., Ramalho, A.: Implications of contact parameters on the dynamics of chain drives. Key Eng. Mater. 572, 367–370 (2014)

    Article  Google Scholar 

  33. Stewart, D.: A high accuracy method for solving ODEs with discontinuous right-hand side. Numer. Math. 58, 299–328 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd revised edn. Springer Series in Computational Mathematics, vol. 8. Springer, Berlin (1991). ISBN 3-540-56670-8

    Book  MATH  Google Scholar 

  35. Qian, Z.J., Zhang, D.G., Liu, J.: Recursive formulation for dynamic modeling and simulation of multilink spatial flexible robotic manipulators. Adv. Mech. Eng. 2013, 216014 (2013)

    Article  Google Scholar 

  36. Hunt, K.H., Crossley, F.R.E.: Coefficient of restitution interpreted as damping in vibroimpact. J. Appl. Mech. 42(2), 440–445 (1975)

    Article  Google Scholar 

  37. Flores, P., Machado, M., Silva, M.T., Martins, J.M.: On the continuous contact force models for soft materials in multibody dynamics. Multibody Syst. Dyn. 25, 357–375 (2011)

    Article  MATH  Google Scholar 

  38. Herbert, R.G., McWhannell, D.C.: Shape and frequency composition of pulses from an impact pair. ASME J. Eng. Ind. 99(3), 513–518 (1977)

    Article  Google Scholar 

  39. Li, X.S., Fang, S.C.: On the entropic regularization method for solving min–max problems with applications. Math. Methods Oper. Res. 46(1), 119–130 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  40. Flores, P., Ambrósio, J., Claro, J.C.P., et al.: Kinematics and Dynamics of Multibody Systems with Imperfect Joints: Models and Case Studies. Springer, Berlin (2008)

    MATH  Google Scholar 

  41. Flores, P., Lankarani, H.M.: Dynamic response of multibody systems with multiple clearance joints. J. Comput. Nonlinear Dyn. 7(3), 1–13 (2012)

    Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundations of China (No. 11602120), Key Technologies Research and Development Program of China (No. 2013BAD08B02), A Collaboration of the Science and Technology Innovation Projects at the Chinese Academy of Agricultural Sciences (No. CAAS-XTCX2016006), and the National Key Research and Development Program of China (No. 2016YFD0702003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengqian Jin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Zhang, D. & Jin, C. A regularized approach for frictional impact dynamics of flexible multi-link manipulator arms considering the dynamic stiffening effect. Multibody Syst Dyn 43, 229–255 (2018). https://doi.org/10.1007/s11044-017-9589-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-017-9589-0

Keywords

Navigation