Skip to main content
Log in

Lie-group integration method for constrained multibody systems in state space

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Coordinate-free Lie-group integration method of arbitrary (and possibly higher) order of accuracy for constrained multibody systems (MBS) is proposed in the paper. Mathematical model of MBS dynamics is shaped as a DAE system of equations of index 1, whereas dynamics is evolving on the system state space modeled as a Lie-group. Since the formulated integration algorithm operates directly on the system manifold via MBS elements’ angular velocities and rotational matrices, no local rotational coordinates are necessary, and kinematical differential equations (that are prone to singularities in the case of three-parameter-based local description of the rotational kinematics) are completely avoided. Basis of the integration procedure is the Munthe–Kaas algorithm for ODE integration on Lie-groups, which is reformulated and expanded to be applicable for the integration of constrained MBS in the DAE-index-1 form. In order to eliminate numerical constraint violation for generalized positions and velocities during the integration procedure, a constraint stabilization projection method based on constrained least-square minimization algorithm is introduced. Two numerical examples, heavy top dynamics and satellite with mounted 5-DOF manipulator, are presented. The proposed Lie-group DAE-index-1 integration scheme is easy-to-use for an MBS with kinematical constraints of general type, and it is especially suitable for dynamics of mechanical systems with large 3D rotations where standard (vector space) formulations might be inefficient due to kinematical singularities (three-parameter-based rotational coordinates) or additional kinematical constraints (redundant quaternion formulations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Schiehlen, W.: Multibody system dynamics: Roots and perspectives. Multibody Syst. Dyn. 1, 149–188 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  2. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  3. Holm, D.: Geometric Mechanics. Part II: Rotating, Translating and Rolling. Imperial College Press, London (2008)

    Google Scholar 

  4. Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Hills (1988)

    Google Scholar 

  5. Shutz, B.F.: Geometrical Methods of Mathematical Physics. Cambridge Univ. Press, Cambridge (1980)

    Book  Google Scholar 

  6. Boothby, W.: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. Academic Press, San Diego (2003)

    Google Scholar 

  7. Morawiec, A.: Orientations and Rotations. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  8. Betsch, P., Siebert, R.: Rigid body dynamics in terms of quaternions: Hamiltonian formulation and conserving numerical integration. Int. J. Numer. Methods Eng. 79, 444–473 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Reich, S., Zentrum, K.Z.: Symplectic integrators for systems of rigid bodies. Integration Algorithms for Classical Mechanics. Fields Inst. Commun. 10, 181–191 (1996)

    Google Scholar 

  10. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics. Cambridge Univ. Press, Cambridge (2004)

    MATH  Google Scholar 

  11. Betsch, P., Steinmann, P.: Constrained integration of rigid body dynamics. Comput. Methods Appl. Mech. Eng. 191, 467–488 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Iserles, A., Munthe-Kaas, H.Z., Norsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000)

    Article  MathSciNet  Google Scholar 

  13. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Munthe-Kaas, H.: Runge–Kutta methods on Lie groups. BIT Numer. Math. 38, 92–111 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  15. Brüls, O., Cardona, A.: On the use of Lie group time integrators in multibody dynamics. ASME J. Comput. Nonlinear Dyn. 5, 1–23 (2010)

    Article  Google Scholar 

  16. Cardona, A., Geradin, M.: A beam finite element non-linear theory with finite rotations. Int. J. Numer. Methods Eng. 26, 2403–2438 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  17. Simo, J.C., Vu-Quoc, L.: On the dynamics in space of rods undergoing large motions—geometrically exact approach. Comput. Methods Appl. Mech. Eng. 66, 125–161 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Simo, J., Wong, K.: Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum. Int. J. Numer. Methods Eng. 31, 19–52 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  19. Bottasso, C.L., Borri, M.: Integrating finite rotations. Comput. Methods Appl. Mech. Eng. 164, 307–331 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Müller, A.: Approximation of finite rigid body motions from velocity fields. J. Appl. Math. Mech./Z. Angew. Math. Mech. (ZAMM) 90, 514–521 (2010)

    Article  MATH  Google Scholar 

  21. Müller, A., Terze, Z.: The significance of the configuration space Lie group for the constraint satisfaction in numerical time integration of multibody systems. Mech. Mach. Theory 82, 173–202 (2014)

    Article  Google Scholar 

  22. Haug, E.J.: Computer Aided Kinematics and Dynamics of Mechanical Systems. Allyn and Bacon, Boston (1989)

    Google Scholar 

  23. Schiehlen, W.: Multibody Systems Handbook. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  24. Blajer, W.: A geometrical interpretation and uniform matrix formulation of multibody system dynamics. Z. Angew. Math. Mech. 81(4), 247–259 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Terze, Z., Naudet, J.: Geometric properties of projective constraint violation stabilization method for generally constrained multibody systems on manifolds. Multibody Syst. Dyn. 20, 85–106 (2008)

    Article  MATH  Google Scholar 

  26. Geradin, M., Cardona, A.: Flexible Multibody Dynamics. Wiley, Chichester (2004)

    Google Scholar 

  27. Bauchau, O.A.: Flexible Multibody Dynamics. Springer, Dordrecht, Heidelberg, London, New York (2010)

    Google Scholar 

  28. Celledoni, E., Owren, B.: Lie group methods for rigid body dynamics and time integration on manifolds. Comput. Methods Appl. Mech. Eng. 192, 421–438 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Blajer, W.: Methods for constraint violation suppression in the numerical simulation of constrained multibody systems—a comparative study. Comput. Methods Appl. Mech. Eng. 200(13–16), 1568–1576 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  30. García Orden, J.C.: Energy considerations for the stabilization of constrained mechanical systems with velocity projection. Nonlinear Dyn. 60(1–2), 49–62 (2010)

    Article  MATH  Google Scholar 

  31. Eich, E.: Convergence results for a coordinate projection method applied to mechanical systems with algebraic constraints. SIAM J. Numer. Anal. 30, 1467–1482 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Eich-Soellner, E., Führer, C.: Numerical Methods in Multibody Dynamics. Teubner, Stuttgart (1998)

    Book  MATH  Google Scholar 

  33. Bayo, E., Ledesma, R.: Augmented Lagrangian and mass orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9, 113–130 (1996)

    Article  MathSciNet  Google Scholar 

  34. Terze, Z., Naudet, J.: Structure of optimized generalized coordinates partitioned vectors for holonomic and non-holonomic systems. Multibody Syst. Dyn. 24, 203–218 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  35. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II. Stiff and Differential-Algebraic Problems. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  36. Müller, A., Terze, Z.: A constraint stabilization method for time integration of constrained multibody systems in Lie group setting. In: ASME 2014 IDETC on 10th International Conference on Multibody Systems, Nonlinear Dynamics, and Control (MSNDC), 17–20 August 2014, Buffalo, New York, USA (2014)

    Google Scholar 

  37. Andrzejewski, T., Bock, H.G., Eich, E., von Schwerin R.: Recent advances in the numerical integration of multibody systems. In: Schiehlen, W. (ed.) Advanced Multibody System Dynamics. Kluwer Academic, Dordrecht (1993)

    Google Scholar 

  38. Müller, A., Terze, Z.: On the choice of configuration space for numerical Lie group integration of constrained rigid body systems. J. Comput. Appl. Math. (2013). doi:10.1016/j.cam.2013.10.039

    Google Scholar 

  39. Budd, C.J., Iserles, A.: Geometric integration: numerical solution of differential equations on manifolds. Philos. Trans.: Math. Phys. Eng. Sci. 357, 945–956 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first and third author acknowledge the support of the Croatian Science Foundation under the contract of the project 04/35 ‘Geometric Numerical Integrators for Dynamic Analysis and Simulation of Structural Systems’. The second author acknowledges that this work has been partially supported by the Austrian COMET-K2 programm of the Linz Center of Mechatronics (LCM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdravko Terze.

Appendices

Appendix A: Differential of the exponential map

Starting from the rotational motion of one body, we introduce the differential of the exponential mapping \(\operatorname{dexpm}: \mathit{so}(3) \times\mathit{so}(3) \to\mathit{so}(3)\) via ‘left trivialized’ tangent of the matrix exponential map ‘expm’ in a way that the following expression is valid:

$$ \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{expm} \bigl(\bar{w}(t)\bigr) = \operatorname{expm}\bigl(\bar{w}(t)\bigr) \mathrm{dexpm}_{ - \bar{w}(t)} \bigl(\dot{\bar{w}}(t)\bigr), $$
(A.1)

where the function \(\mathrm{dexpm}_{ - \bar{w}}\) is defined as

$$\begin{aligned} \mathrm{dexpm}_{ - \bar{w}}(w) &= w - \frac{1}{2!} [ \bar{w},w ] + \frac{1}{3!} \bigl[ \bar{w}, [ \bar{w},w ] \bigr] + \frac{1}{4!} \bigl[ \bar{w}, \bigl[ \bar{w}, [ \bar{w},w ] \bigr] \bigr] +\cdots \\ &= \sum_{j = 0}^{\infty} \frac{1}{(j + 1)!} \bigl( - \mathrm{ad}_{\bar{w}}^{j}(w)\bigr), \end{aligned}$$
(A.2)

and the adjoint operator \(\mathrm{ad}_{\bar{w}}\) is given as the Lie bracket

$$ \mathrm{ad}_{\bar{w}}(w) = \bar{w}w - w\bar{w} = [ \bar{w},w ], \quad \mbox{for all}\ w(t), \bar{w}(t) \in\mathit{so}(3). $$
(A.3)

Furthermore, the inverse function \(\mathrm{dexpm}_{ - \bar{w}}^{ - 1}\) is defined by

$$ \mathrm{dexpm}_{ - \bar{w}}^{ - 1}(w) = w + \frac{1}{2} [ \bar{w},w ] + \frac{1}{12} \bigl[ \bar{w}, [ \bar{w},w ] \bigr] +\cdots = \sum_{j = 0}^{\infty} \frac{B_{j}}{j!} \bigl( - \mathrm{ad}_{\bar{w}}^{j}(w)\bigr), $$
(A.4)

where B j are Bernoulli numbers [39]. Before we proceed, please note that Eqs. (A.2) and (A.4) are derived under the assumption of the ‘left trivialization’ expression in (A.1). This is in accordance with our formulation of the Lie-algebra , where the left-invariant vector field \(\tilde{\boldsymbol{\omega}}_{i} \in\mathit{so}(3)\) is used in its definition. However, in the literature, the differential of the exponential mapping is usually defined by using the ‘right trivialized’ formulation in the form

$$ \frac{\mathrm{d}}{\mathrm{d}t}\operatorname{expm} \bigl(\bar{w}(t)\bigr) = \mathrm{dexpm}_{\bar{w}(t)} \bigl(\dot{\bar{w}}(t)\bigr)\operatorname{expm} \bigl(\bar{w}(t)\bigr). $$
(A.5)

This would lead to expressions of \(\mathrm{dexpm}_{\bar {w}}\) and \(\mathrm{dexpm}_{\bar{w}}^{ - 1}\) with Lie brackets that would appear with different signs in (A.2) and (A.4). However, please note that if the right trivialization had been used, the final expressions for \(\mathrm{dexpm}_{\bar{w}}\) and \(\mathrm{dexpm}_{\bar{w}}^{ - 1}\) would have differed from (A.2) and (A.4) only in the sign of the second term \(\pm \frac{1}{2} [ \bar{w},w ]\).

After deriving the differential of the exponential map for the rotational motion of the rigid body, we need to include its translational part as well. Accordingly, the differential of the exponential mapping for the unconstrained body i motion \(\boldsymbol{\mathcal {R}}^{3} \times\mathit {SO}(3)\) is given by

$$ \operatorname{dexp}_{ - \bar{z}_{i}}(z_{i}) = \operatorname{dexp}_{( - \bar {\mathbf{v}}_{i}, - \bar{w}_{i})} (\mathbf{v}_{i},w_{i}) = \bigl(\mathbf{v}_{i}, \mathrm{dexpm}_{ - \bar {w}_{i}}(w_{i})\bigr), $$
(A.6)

(where \(\mathrm{dexpm}_{ - \bar{w}_{i}}\) function is introduced as above), and its inverse is readily given as

$$ \operatorname{dexp}_{ - \bar{z}_{i}}^{ - 1}(z_{i}) = \operatorname{dexp}_{_{( - \bar{\mathbf{v}}_{i}, - \bar{w}_{i})}}^{ - 1}(\mathbf{v}_{i},w_{i}) = \bigl(\mathbf{v}_{i}, \mathrm{dexpm}_{ - \bar{w}_{i}}^{ - 1}(w_{i})\bigr). $$
(A.7)

With the above results, we can define the differential of the exponential mapping for the whole unconstrained MBS system as the function given by

$$ \operatorname{dexp}_{ - \bar{z}}(z) = \bigl(\operatorname{dexp}_{ - \bar{z}_{1}}(z_{1}),\ldots, \operatorname{dexp}_{ - \bar{z}_{k}}(z_{k}),\dot{\mathbf{v}}_{1},\dot {w}_{1},\ldots,\dot{\mathbf{v}}_{k},\dot{w}_{k}\bigr), $$
(A.8)

and its inverse can be written as

$$ \operatorname{dexp}_{ - \bar{z}}^{ - 1}(z) = \bigl(\operatorname{dexp}_{ - \bar{z}_{1}}^{ - 1}(z_{1}),\ldots,\operatorname{dexp}_{ - \bar {z}_{k}}^{ - 1}(z_{k}),\dot{\mathbf{v}}_{1},\dot{w}_{1},\ldots,\dot{\mathbf {v}}_{k},\dot{w}_{k}\bigr). $$
(A.9)

Appendix B: Derivation of algebraic equations imposed by the fixed-point constraint

In order to model fixed-point constraint, three algebraic constraint equations at the generalized displacement level can be written as

$$ \boldsymbol{\Phi}^{\mathrm{FP}}=\mathbf{r}_1^{\mathrm {FP}}-\mathbf{r}_1-\mathbf{R}_i\mathrm{r}_{b_1}^{\mathrm{FP}}=0, $$
(B.1)

where \(\mathbf{r}_{b_{1}}^{\mathrm{FP}}\) represents the location of the fixed-point constraint in the body 1 local coordinate system that is fixed to the body (see Fig. 26), r 1 is the position of the mass centre of body 1 in the global coordinate system, and \(\mathbf{r}_{1}^{\mathrm{FP}}\) is a constant vector that determines, in the global coordinate system, the position of the body point that is fixed in space.

Fig. 26
figure 26

Fixed-point constraint position vectors

After differentiating with respect to time, the velocity level constraint is obtained in the form

$$ \dot{\boldsymbol{\Phi}}^{\mathrm{FP}}=-\mathbf{v}_1-\mathbf {R}_1\tilde{\boldsymbol{\omega}}_1 \mathbf{r}_{b_1}^{\mathrm{FP}}=\mathbf{0}, $$
(B.2)

whereas additional differentiation yields an acceleration constraint in the form

$$ \ddot{\boldsymbol{\Phi}}^{\mathrm{FP}}=-\dot{\mathbf {v}}_1-\mathbf{R}_1 \tilde{\mathbf{r}}_{b_1}^{\mathrm{FP}} \dot{\boldsymbol{\omega}}_1-\mathbf{R}_1\tilde{\boldsymbol{\omega }}_1\tilde{\boldsymbol{\omega}}_1 \mathbf{r}_{b_1}^{\mathrm{FP}} =\mathbf{0}. $$
(B.3)

To obtain the acceleration constraint in the form that can be included in the system dynamics governing equations (13) the acceleration constraint (B.3) can be written as

$$ \mathbf{C}_1^{\mathrm{FP}(3\times6)}\dot{\mathbf{v}}_1^{(6\times1)}= \boldsymbol{\xi}_1^{\mathrm{FP}(3\times1)}, $$
(B.4)

where \(\dot{\mathbf{v}}_{1}^{(6 \times1)} = [\dot{\mathbf{v}}_{1}^{T} \ \dot{\boldsymbol{\omega}}_{1}^{T} ]^{T}\) is the generalized acceleration vector of body 1, and the fixed-point constraint matrix \(\mathbf{C}_{1}^{\mathrm{FP}(3\times6)}\) and the right-hand-side acceleration term \(\boldsymbol{\xi}_{1}^{\mathrm{FP}(3\times1)}\) are given as

$$ \mathbf{C}_1^{\mathrm{FP}(3\times6)}=\bigl[ -\mathbf{I}_3\quad\mathbf{R}_1\tilde{\mathbf{r}}_{b_1}^{\mathrm{FP}} \bigr], $$
(B.5)

and

$$ \boldsymbol{\xi}_1^{\mathrm{FP}(3\times1)}=\mathbf{R}_1\tilde{\boldsymbol {\omega}}_1 \tilde{\boldsymbol{\omega}}_1 \mathbf{r}_{b_1}^{\mathrm{FP}}. $$
(B.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terze, Z., Müller, A. & Zlatar, D. Lie-group integration method for constrained multibody systems in state space. Multibody Syst Dyn 34, 275–305 (2015). https://doi.org/10.1007/s11044-014-9439-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9439-2

Keywords

Navigation