Skip to main content
Log in

Musculoskeletal dynamics simulation using shape-varying muscle mass models

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Recent studies have shown that the constant inertia assumption made in typical muscle dynamic models can lead to significant discrepancies in accuracy of simulation or inverse dynamics. This paper proposes a general framework for musculoskeletal dynamic simulation that takes into account changes in muscle inertia that occur during movement. We first develop a general shape-varying muscle mass model in which muscle deformations are modeled via linear volume-preserving transformations, and derive a corresponding muscle mass matrix and Jacobian in a Lagrangian setting. A dynamic musculoskeletal model is then constructed, in which each muscle is segmented into multiple segments that are each modeled using our earlier muscle deformation model. Depending on the extent of muscle segmentation, the musculoskeletal dynamics can be simulated to arbitrary resolution. To improve the computational efficiency of the simulation, we propose a spline-based dynamics algorithm consisting of an offline and online computation stage. In the offline stage, a parametrized B-spline surface on the space \(\mathcal{P}(n)\) of n×n symmetric positive-definite matrices is constructed so as to fit a set of sampled values of the system mass matrix. In the online computation stage, given an arbitrary configuration, the mass matrix for that configuration is obtained as a weighted average of the nearest sampled values (i.e., the control points of the B-spline surface). The Coriolis forces are evaluated directly from the partial derivatives of the B-spline approximation of the mass matrix. Our method ensures that the online computational costs effectively remain fixed independently of the system dimension or complexity. Detailed case studies involving planar arms with multiple shape-varying muscles attached demonstrate the feasibility and computational advantages of our proposed method for musculoskeletal modeling and simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chadwick, J.E., Haumann, D.R., Parent, R.E.: Layered construction for deformable animated characters. In: ACM Siggraph Computer Graphics, vol. 23, pp. 243–252. ACM, New York (1989)

    Google Scholar 

  2. Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: ACM Siggraph Computer Graphics, vol. 20, pp. 151–160. ACM, New York (1986)

    Google Scholar 

  3. Moccozet, L., Thalmann, N.M.: Dirichlet free-form deformations and their application to hand simulation. In: Computer Animation’97, pp. 93–102. IEEE, New York (1997)

    Google Scholar 

  4. Nedel, L.P., Thalmann, D.: Real time muscle deformations using mass–spring systems. In: Computer Graphics International, 1998. Proceedings, pp. 156–165. IEEE, New York (1998)

    Google Scholar 

  5. Chen, D.T., Zeltzer, D.: Pump it up: Computer animation of a biomechanically based model of muscle using the finite element method, vol. 26. ACM, New York (1992)

    Google Scholar 

  6. Zhu, Q.-h., Chen, Y., Kaufman, A.: Real-time biomechanically-based muscle volume deformation using FEM. In: Computer Graphics Forum, vol. 17, pp. 275–284 (1998), Wiley Online Library

    Google Scholar 

  7. Teran, J., Blemker, S., Hing, V., Fedkiw, R.: Finite volume methods for the simulation of skeletal muscle. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Computer animation, pp. 68–74, Eurographics Association, Aire-la-Ville (2003)

    Google Scholar 

  8. Millard, M., Uchida, T., Seth, A., Delp, S.L.: Flexing computational muscle: Modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135(2), 021005 (2013)

    Article  Google Scholar 

  9. Millard, M., Delp, S.: A computationally efficient muscle model. In: ASME 2012 Summer Bioengineering Conference, pp. 1055–1056. American Society of Mechanical Engineers, New York (2012)

    Chapter  Google Scholar 

  10. Lee, D., Glueck, M., Khan, A., Fiume, E., Jackson, K.: Modeling and simulation of skeletal muscle for computer graphics: A survey. Found. Trends Comput. Graph. Vis. 7(4), 229–276 (2012)

    Article  Google Scholar 

  11. Pai, D.K.: Muscle mass in musculoskeletal models. J. Biomech. 43(11), 2093–2098 (2010)

    Article  MathSciNet  Google Scholar 

  12. Rao, G., Amarantini, D., Berton, E., Favier, D.: Influence of body segments’ parameters estimation models on inverse dynamics solutions during gait. J. Biomech. 39(8), 1531–1536 (2006)

    Article  Google Scholar 

  13. Piovesan, D., Pierobon, A., DiZio, P., Lackner, J.R.: Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics. J. Biomech. Eng. 133(3), 031003 (2011)

    Article  Google Scholar 

  14. Abbott, B., Baskin, R.: Volume changes in frog muscle during contraction. J. Physiol. 161(3), 379–391 (1962)

    Article  Google Scholar 

  15. Matsubara, I., Elliott, G.F.: X-ray diffraction studies on skinned single fibres of frog skeletal muscle. J. Mol. Biol. 72(3), 657–669 (1972)

    Article  Google Scholar 

  16. Alperin, J., Bell, R.: Groups and representations. Graduate texts in mathematics (1995)

    Book  MATH  Google Scholar 

  17. Müller, A., Maisser, P.: A Lie-group formulation of kinematics and dynamics of constrained mbs and its application to analytical mechanics. Multibody Syst. Dyn. 9(4), 311–352 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  19. Smith, S.T.: Covariance, subspace, and intrinsic Cramer–Rao bounds. IEEE Trans. Signal Process. 53(5), 1610–1630 (2005)

    Article  MathSciNet  Google Scholar 

  20. Dryden, I.L., Koloydenko, A., Zhou, D.: Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging. Ann. Appl. Stat. 3(3), 1102–1123 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Barmpoutis, A., Vemuri, B.C., Shepherd, T.M., Forder, J.R.: Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imaging 26(11), 1537–1546 (2007)

    Article  Google Scholar 

  22. Nakamura, Y., Dasgupta, A.: Generation of physically consistent interpolant motion from key frames for human-like multibody systems in flight. In: Intelligent Robots and Systems. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, vol. 2, pp. 1102–1107. IEEE, New York (1999)

    Google Scholar 

  23. Martin, B.J., Bobrow, J.E.: Determination of minimum-effort motions for general open chains. In: Robotics and Automation. Proceedings, 1995 IEEE International Conference on, vol. 1, pp. 1160–1165. IEEE, New York (1995)

    Google Scholar 

  24. Kim, J., Baek, J., Park, F.C.: Newton-type algorithms for robot motion optimization. In: Intelligent Robots and Systems. IROS’99. Proceedings. 1999 IEEE/RSJ International Conference on, vol. 3, pp. 1842–1847. IEEE, New York (1999)

    Google Scholar 

  25. Lee, S., Choi, M., Kim, H., Park, F.C.: Geometric direct search algorithms for image registration. IEEE Trans. Image Process. 16(9), 2215–2224 (2007)

    Article  MathSciNet  Google Scholar 

  26. Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by the ADD Biomimetic Robotics Research Center, the Center for Advanced Intelligent Manipulation, SNU-IAMD and BK21+ program in mechanical engineering at Seoul National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, M., Hong, J. & Park, F.C. Musculoskeletal dynamics simulation using shape-varying muscle mass models. Multibody Syst Dyn 33, 367–388 (2015). https://doi.org/10.1007/s11044-014-9427-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-014-9427-6

Keywords

Navigation