Skip to main content
Log in

Investigation of a method for the three-dimensional rigid body dynamics inverse problem

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The three-dimensional rigid body dynamics inverse problem is cast as a discrete optimal control problem and solved using dynamic programming. The optimal control problem uses a forward dynamic model to provide estimates of unknown forces while matching noisy measurement histories. An L curve analysis is used to objectively select the amount of smoothing by trading off the magnitude of the estimated unknown forces with the fit to the noisy measurements. The forward dynamic model is derived using finite-element methodology and accounts for the inertia and mass properties of rigid bodies with the use of natural coordinates. The advantages of this forward model are that the large displacements’ nonlinearities can be routinely represented in the inverse problem and that it also allows the use of an exact energy conserving method to numerically integrate the equations of motion. A numerical example of a large displacement three body model is included to demonstrate the performance of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Busby, H.R., Trujillo, D.M.: Optimal regularization of an inverse dynamics problem. Comput. Struct. 63(2), 243–248 (1997)

    Article  MATH  Google Scholar 

  2. Hollandsworth, P.E., Busby, H.R.: Impact force identification using the general inverse technique. Int. J. Impact Eng. 8, 315–322 (1989)

    Article  Google Scholar 

  3. Tanaka, M., Chen, W.: Identification of elastodynamics loads using DRBEM and dynamic programming filter. In: Inverse Problems in Engineering Mechanics, vol. II, pp. 333–342. Elsevier, Amsterdam (2000)

    Google Scholar 

  4. Isobe, D.: A unified numerical scheme for calculating inverse dynamics of open/closed link mechanisms. In: IECON’01: The 27th Annual Conference of the IEEE Industrial Electronics Society, pp. 341–344, Denver, USA (2001)

    Google Scholar 

  5. Bottasso, C.L., Croce, A., Ghezzi, L., Faure, P.: On the solution of inverse dynamics and trajectory optimization problems for multibody systems. Multibody Syst. Dyn. 11, 1–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Risher, D.W., Schutte, L.M., Runge, C.F.: The use of inverse dynamics solutions in direct dynamics simulations. J. Biomech. Eng. 119, 417–422 (1997)

    Article  Google Scholar 

  7. Runge, C.F., Zajac, F.E., Allum, J.H.J., Risher, D.W., Bryson, A.E., Honegger, F.: Estimating net joint torques from kinesiological data using optimal linear system theory. IEEE Trans. Biomed. Eng. 42(12), 1158–1164 (1995)

    Article  Google Scholar 

  8. Garcia de Jalon, J.: Twenty-five years of natural coordinates. Multibody Syst. Dyn. 18, 15–33 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Simo, J.C., Gonzalez, O.: Assessment of energy-momentum and symplectic schemes for stiff dynamical systems. In: Proc. ASME Winter Annual Meeting, New Orleans, Louisiana (1993)

    Google Scholar 

  10. Goicolea, J.M., Garcia Orden, J.C.: Dynamic Analysis of Rigid and Deformable multibody systems with penalty methods and energy-momentum schemes. Comput. Methods Appl. Mech. Eng. 188(4), 789–804 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multi-Body Systems—the Real-Time Challenge. Springer, New York (1994)

    Book  Google Scholar 

  12. Hansen, P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34(4), 561–580 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Trujillo, D.M., Busby, H.R.: Practical Inverse Analysis in Engineering. CRC Press LLC, Boca Raton (1997)

    MATH  Google Scholar 

  14. Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Wiley, New York (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Trujillo.

Appendix: Inertia matrix C

Appendix: Inertia matrix C

The matrix C (equation (1)) can be expressed in terms of the I body matrix:

$$\mathbf{I}_{\mathrm{BODY}} = \left[ \begin{array}{c@{\quad}c@{\quad}c}I_{11} & I_{12} & I_{13} \\& I_{22} & I_{23} \\\mathit{Sym} & & I_{33} \\\end{array} \right]$$

Let

The 9×9 C matrix is then

$$\mathbf{C} = \left[ \begin{array}{c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c@{\quad}c}a & 0 & 0 & - I_{12} & 0 & 0 & - I_{13}& 0 & 0 \\ & a & 0 & 0 & - I_{12} & 0 & 0 & - I_{13} & 0 \\ & & a & 0 &0 & - I_{12} & 0 & 0 & - I_{13} \\ & & & b & 0 & 0 & - I_{23} & 0 & 0 \\& & & & b & 0 & 0 & - I_{23} & 0 \\ & & & & & b & 0 & 0 & - I_{23} \\ && \mathit{Sym} & & & & c & 0 & 0 \\ & & & & & & & c & 0 \\ & & & & & & & & c\end{array} \right]$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trujillo, D.M., Busby, H.R. Investigation of a method for the three-dimensional rigid body dynamics inverse problem. Multibody Syst Dyn 27, 423–435 (2012). https://doi.org/10.1007/s11044-011-9290-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9290-7

Keywords

Navigation