Skip to main content
Log in

The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driven models

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

This paper discusses some methodological questions regarding the application of EMG-driven models to estimate muscle forces, for the triceps surae performing isometric contractions. Ankle torque is estimated from a Hill-type muscle model driven by EMG data, collected from the three components of triceps surae and tibialis anterior. Ankle joint torque is synchronously collected from a dynamometer, which is compared to the sum of each muscle force multiplied by the respective ankle moment arm. A protocol consisting of two steps of low and medium/high loads is used. Raw EMG signal is processed and used as the input signal for the muscle model. The difference between simulated and dynamometer measured torque is calculated as the RMS error between the two curves. A set of nominal muscle model parameters is initially chosen from literature (e.g., OpenSim), which allows observing the characteristics of the error distribution. One possibility to improve model accuracy is using individual muscle parameters. We investigated the effect of applying simple scale factors to the nominal muscle model parameters and using ultrasound for estimating muscle maximum force. Other questions regarding muscle model improvements are also addressed, such as using a nonlinear formulation of activation dynamics and variable pennation angle. Surface EMG signals acquisition and processing can also affect force estimation accuracy. Electrodes positioning can influence signal amplitude, and the one-channel EMG may not represent actual excitation for the whole muscle. We have shown that high density EMG reduces, in some cases, the torque estimation error.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fleming, B.C., Beynnon, B.D.: In Vivo measurement of ligament/tendon strains and forces: a review. Ann. Biomed. Eng. 32, 318–328 (2004)

    Article  Google Scholar 

  2. Yeadon, M.R., King, M.A., Wilson, C.: Modeling the maximum voluntary joint torque/angular velocity relationship in human movement. J. Biomech. 39, 476–482 (2006)

    Article  Google Scholar 

  3. Anderson, D.E., Madigana, M.L., Nussbaum, M.A.: Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb. J. Biomech. 40, 3105–3113 (2007)

    Article  Google Scholar 

  4. Thelen, D.G., Schultz, A.B., Alexander, N.B., Ashton-Miller, J.A.: Effects of age on rapid ankle torque development. J. Gerontol. 5IA(5), M226–M232 (1996)

    Google Scholar 

  5. DeVita, P., Hortobagyi, T.: Obesity is not associated with increased knee joint torque and power during level walking. J. Biomech. 36, 1355–1362 (2003)

    Article  Google Scholar 

  6. Menegaldo, L.L., Fleury, A.T., Weber, H.I.: Biomechanical modeling and optimal control of human posture. J. Biomech. 36, 1701–1712 (2003)

    Article  Google Scholar 

  7. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. J. Biomech. Eng. 123, 381–391 (2001)

    Article  Google Scholar 

  8. Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43, 1055–1060 (2010)

    Article  Google Scholar 

  9. Yamaguchi, G.T., Moran, D.W., Si, J.: A computationally efficient method for solving the redundant problem in biomechanics. J. Biomech. 28, 999–1005 (1995)

    Article  Google Scholar 

  10. Bottasso, C.L., Prilutsky, B.I., Croce, A., Imberti, E., Sartirana, S.: A numerical procedure for inferring from experimental data the optimization cost functions using a multibody model of the neuro-musculoskeletal system. Multibody Syst. Dyn. 16, 123–154 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beck, T.W., DeFreitas, J.M., Stock, M.S., Dillon, M.A.: Comparison of the muscle activation pattern for the vastus lateralis before and after an 8-week resistance training program. Biomed. Signal Process. Control 5, 264–270 (2010)

    Article  Google Scholar 

  12. Clancy, E.A., Hogan, N.: Multiple site electromyography amplitude estimation. IEEE Trans. Biomed. Eng. 42, 203–211 (1995)

    Article  Google Scholar 

  13. Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36, 765–776 (2003)

    Article  Google Scholar 

  14. Langenderfer, J., LaScalza, S., Mell, A., Carpenter, J.E., Kuhn, J.E., Hughes, R.E.: An EMG-driven model of the upper extremity and estimation of long head biceps force. Comput. Biol. Med. 35, 25–39 (2005)

    Article  Google Scholar 

  15. Blajer, W., Czaplicki, A., Dziewiecki, K., Mazur, Z.: Influence of selected modeling and computational issues on muscle force estimates. Multibody Syst. Dyn. 24, 473–492 (2010)

    Article  MATH  Google Scholar 

  16. Menegaldo, L.L., Oliveira, L.F.: Effect of muscle model parameter scaling for isometric plantar flexion torque prediction. J. Biomech. 42, 2597–2601 (2009)

    Article  Google Scholar 

  17. Oliveira, L.F., Vieira, T.M.M., Menegaldo, L.L., Merletti, R.: Can the use of a high density EMG system improve a biomechanical model for predicting ankle plantar flexors force. In: Proceedings of 22th ISB Congress, Cape Town, South Africa (2009)

    Google Scholar 

  18. Oliveira, L.F., Menegaldo, L.L.: Study of muscle torque sharing patterns in isometric plantar flexion by an EMG-driven biomechanical model. In: Proceedings of the Annual Meeting of the American Society of Biomechanics, State College, PA (2009)

    Google Scholar 

  19. Oliveira, L.F., Menegaldo, L.L.: Input error in an EMG-driven muscle model: an analysis based on isometric plantar flexion (2011 submitted)

  20. Oliveira, L.F., Menegaldo, L.L.: Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model. J. Biomech. 43, 2816–2821 (2010)

    Article  Google Scholar 

  21. Menegaldo, L.L., Oliveira, L.F.: Plantar flexors isometric force distribution patterns with the knee extended or flexed. In: Abstracts of 6th World Congress of Biomechanics, Singapore (2010)

    Google Scholar 

  22. Oliveira, L.F., Menegaldo, L.L.: Torque sharing in submaximal isometric plantar flexion: an analysis based on an EMG-driven muscle model. In: Proceedings of XXII Brazilian Congress on Biomedical Engineering, Tiradentes, Brazil (2010)

    Google Scholar 

  23. Silva, M.P.T., Ambrósio, J.A.C.: Kinematic Data Consistency in the Inverse Dynamic Analysis of Biomechanical Systems. Multibody Syst. Dyn. 8, 219–239 (2002)

    Article  MATH  Google Scholar 

  24. Piazza, S.J., Delp, S.L.: The influence of muscles on knee flexion during the swing phase of gait. J. Biomech. 29, 723–733 (1996)

    Article  Google Scholar 

  25. Zajac, F.E.: Muscle and tendon: properties, models, scaling and application to biomechanics and motor control. CRC. Crit. Rev. Biomed. Eng. 17, 359–411 (1989)

    Google Scholar 

  26. Menegaldo, L.L., Fleury, A.T., Weber, H.I.: Moment arms and musculotendon lengths estimation for a three-dimensional lower-limb model. J. Biomech. 37, 1447–1453 (2004)

    Article  Google Scholar 

  27. Brand, R., Crowninshield, R., Wittstock, C., Pedersen, D., Clark, C., Van Frieken, F.: A model of lower extremity muscular anatomy. J. Biomech. Eng. 104, 304–310 (1982)

    Article  Google Scholar 

  28. Wickiewicz, T.L., Roy, R.R., Powell, P.L., Edgerton, V.R.: Muscle architecture of the human lower limb. Clin. Orthop. Relat. Res. 179, 275–283 (1983)

    Article  Google Scholar 

  29. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C., Guendelman, E., Thelen, D.G.: OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54, 1940–1950 (2007)

    Article  Google Scholar 

  30. Garner, B.A., Pandy, M.G.: Estimation of musculotendon properties in the human upper limb. Ann. Biomed. Eng. 31, 207–220 (2003)

    Article  Google Scholar 

  31. Redl, C., Gfoehler, M., Pandy, M.G.: Sensitivity of muscle force estimates to variations in muscle–tendon properties. Hum. Mov. Sci. 26, 306–319 (2007)

    Article  Google Scholar 

  32. Buchanan, T.S., Lloyd, D.G., Manal, K., Besier, T.F.: Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20, 367–395 (2004)

    Google Scholar 

  33. Manal, K., Buchanan, T.S.: Subject-specific estimates of tendon slack length: a numerical method. J. Appl. Biomech. 20, 195–203 (2004)

    Google Scholar 

  34. Winby, C.R., Lloyd, D.G., Kirk, T.B.: Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J. Biomech. 41, 1682–1688 (2008)

    Article  Google Scholar 

  35. Miyatani, M., Kanechisa, H., Ito, M., Kawakami, Y., Fukunaga, T.: The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur. J. Appl. Physiol. 91, 264–272 (2004)

    Article  Google Scholar 

  36. Ward, S.R., Eng, C.M., Smallwood, L.H., Lieber, R.L.: Are current measurements of lower extremity muscle architecture accurate? Clin. Orthop. Relat. Res. 467, 1074–1082 (2009)

    Article  Google Scholar 

  37. Powell, P.L., Roy, R.R., Kanim, P., Bello, M.A., Edgerton, V.R.: Predictability of skeletal muscle tension from architectural determinations in guinea pig hindlimbs. J. Appl. Physiol. 57, 1715–1721 (1984)

    Google Scholar 

  38. Hoy, M.G., Zajac, F.E., Gordon, M.E.: A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J. Biomech. 23, 157–169 (1990)

    Article  Google Scholar 

  39. Buchanan, T.S.: Evidence that maximum muscle stress is not a constant: differences in specific tension in elbow flexors and extensors. Med. Eng. Phys. 17, 529–536 (1995)

    Article  Google Scholar 

  40. Narici, M.V., Roi, G.S., Landoni, L., Minetti, A.E., Cerretelli, P.: Changes in force, cross-sectional area and neural activation during strength training and detraining of the human quadriceps. Eur. J. Appl. Physiol. Occup. Physiol. 59, 310–319 (1989)

    Article  Google Scholar 

  41. Kawakami, Y., Abe, T., Kuno, S.-Y., Fukunaga, T.: Training-induced changes in muscle architecture and specific tension. Eur. J. Appl. Physiol. Occup. Physiol. 72, 37–43 (1995)

    Article  Google Scholar 

  42. Menegaldo, L.L., Oliveira, L.F.: An EMG-driven model to evaluate quadriceps strengthening after an isokinetic training. Procedia IUTAM 2, 131–141 (2011)

    Article  Google Scholar 

  43. Woods, J.J., Bigland-Ritchie, B.: Linear and nonlinear surface EMG/force relationships in human muscles. An anatomical/functional argument for the existence of both. Am. J. Phys. Med. 62, 287–299 (1983)

    Google Scholar 

  44. Manal, K., Buchanan, T.S.: One-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. J. Biomech. 36, 1197–1202 (2003)

    Article  Google Scholar 

  45. Kawakami, Y., Ichinose, Y., Fukunaga, T.: Architectural and functional features of human triceps surae muscles during contraction. J. Appl. Physiol. 85, 398–404 (1998)

    Google Scholar 

  46. Maganaris, C.N.: A predictive model of moment-angle characteristics in human skeletal muscle: application and validation in muscles across the ankle joint. J. Theor. Biol. 230, 89–98 (2004)

    Article  MathSciNet  Google Scholar 

  47. Karamanidis, K., Stafilidis, S., DeMonte, G., Morey-Klapsing, G., Bruggemann, G., Arampatzis, A.: Inevitable joint angular rotation affects muscle architecture during isometric contraction. J. Electromyogr. Kinesiol. 15, 608–616 (2005)

    Article  Google Scholar 

  48. Clancy, E.A., Morin, E.L., Merletti, R.: Sampling, noise-reduction and amplitude estimation issues in surface electromyography. J. Electromyogr. Kinesiol. 12, 1–16 (2002)

    Article  Google Scholar 

  49. Alonso, F.J., Del Castillo, J.M., Pintado, P.: Application of singular spectrum analysis to the smoothing of raw kinematic signals. J. Biomech. 38, 1085–1092 (2005)

    Article  Google Scholar 

  50. Farina, D., Merletti, R., Enoka, R.: The extraction of neural strategies from the surface EMG. J. Appl. Physiol. 96, 1486–1495 (2004)

    Article  Google Scholar 

  51. Merletti, R., Holobar, A., Farina, D.: Analysis of motor units with high-density electromyography. J. Electromyogr. Kinesiol. 18, 879–890 (2008)

    Article  Google Scholar 

  52. Cavalcanti Garcia, M.A., Vieira, T.M.M.: Surface electromyography: why, when and how to use it. Rev. Andal Med. Deporte 04, 17–28 (2011)

    Google Scholar 

  53. Staudenmann, D., Kingma, I., Daffertshofer, A., Stegeman, D.F., van Dieen, J.H.: Towards optimal multi-channel EMG electrode configurations in muscle force estimation: a high-density EMG study. J. Electromyogr. Kinesiol. 15, 1–11 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano L. Menegaldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menegaldo, L.L., Oliveira, L.F. The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driven models. Multibody Syst Dyn 28, 21–36 (2012). https://doi.org/10.1007/s11044-011-9273-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-011-9273-8

Keywords

Navigation