Skip to main content
Log in

Dynamic properties of ultraviolet-exposed polyurea

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

Polyurea is used in military and civilian applications, where exposure to the sun in long durations is imminent. Extended exposure to ultraviolet radiation from the sun can deteriorate its mechanical performance to suboptimal levels. This study reports on the dynamic mechanical properties of polyurea as a function of ultraviolet radiation exposure duration. Six sets of samples were continuously exposed to ultraviolet radiation for different durations up to 18 weeks. Control samples were also tested that did not receive ultraviolet exposure. The dynamic properties were measured using a dynamic mechanical analyzer. Exposed samples exhibited significant color changes from transparent yellow to opaque tan after 18 weeks of exposure. Changes of color were observed as early as 3 weeks of exposure. The dynamic properties showed an initial increase in the dynamic modulus after 3 weeks of exposure, with no further significant change in the stiffness thereafter. The ultraviolet exposure had a significant impact at relatively short loading times or low temperature, for example, up to 6 decades of time. As loading time increases or polyurea operates at high temperature, the effect of ultraviolet exposure and temperature on the performance become highly coupled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Air Products: Versalink P-1000 Oligomeric Diamine. Air Products and Chemicals, Inc. (2005)

  • Amini, M.R., Isaacs, J.B., Nemat-Nasser, S.: Experimental investigation of response of monolithic and bilayer plates to impulsive loads. J. Impact Eng. 37, 82–89 (2009)

    Article  Google Scholar 

  • Andrady, A.L.: Ultraviolet radiation and polymers. In: Physical Properties of Polymers Handbook, pp. 857–866. Springer, New York (2007)

    Chapter  Google Scholar 

  • Andrady, A.L., et al.: Effects of increased solar ultraviolet radiation on materials. J. Photochem. Photobiol. B, Biol. 46(1), 96–103 (1998)

    Article  Google Scholar 

  • Bahei-El-Din, Y.A., Dvorak, G.J., Fredricksen, O.J.: A blast-tolerant sandwich plate design with a polyurea interlayer. Int. J. Solids Struct. 43(25), 7644–7658 (2006)

    Article  MATH  Google Scholar 

  • Bamford, C., Tipper, C.: Degradation of Polymers. Elsevier, Amsterdam/New York (1975)

    Google Scholar 

  • Barsoum, G.S., Dudt, P.J.: The fascinating behaviors of ordinary materials under dynamic conditions. Ammtiac Q. 4, 11–14 (2010)

    Google Scholar 

  • Benhardt, H., Sears, N., Touchet, T., Cosgriff-Hernandez, E.: Synthesis of collagenase-sensitive polyureas for ligament tissue engineering. Macromol. Biosci. 11(8), 1020–1030 (2011)

    Article  Google Scholar 

  • Bogoslovov, R.B., Roland, C.M., Gamache, R.M.: Impact-induced glass transition in elastomeric coatings. Appl. Phys. Lett. 90(22), 221910 (2007)

    Article  Google Scholar 

  • Castagna, A.M., et al.: The role of soft segment molecular weight on microphase separation and dynamics of bulk polymerized polyureas. Macromolecules 45(20), 8438–8444 (2012)

    Article  Google Scholar 

  • Citron, J.K.: Biomechanical Impact Management Using Polyurea. University of California, Los Angeles (2012)

    Google Scholar 

  • Davis, A., Sims, D.: Weathering of Polymers. Applied Science Publishers, London (1983)

    Google Scholar 

  • Decker, C., Zahouily, K.: Light-stabilization of polymeric materials by grafted UV-cured coatings. J. Polym. Sci., Part A, Polym. Chem. 36(14), 2571–2580 (1998)

    Article  Google Scholar 

  • Decker, C., Zahouily, K.: Photodegradation and photooxidation of thermoset and UV-cured acrylate polymers. Polym. Degrad. Stab. 64(2), 293–304 (1999)

    Article  Google Scholar 

  • DOW Plastics: Isonate 143LP Modified MDI. The DOW Chemical Company (2001)

  • Feldman, D.: Polymer weathering: photo-oxidation. J. Polym. Environ. 10(4), 163–173 (2002)

    Article  MathSciNet  Google Scholar 

  • Gardner, N., Wang, E., Kumar, P., Shukla, A.: Blast mitigation in a sandwich composite using graded core and polyurea interlayer. Exp. Mech. 52(2), 119–133 (2012)

    Article  Google Scholar 

  • Grujicic, M., Pandurangan, B., He, T., Cheeseman, B.A., Yen, C-F., Randow, C.L.: Computational investigation of impact energy absorption capability of polyurea coatings via deformation-induced glass transition. Mater. Sci. Eng. A, Struct. Mater.: Prop. Microstruct. Process. 527(29), 7741–7751 (2010)

    Article  Google Scholar 

  • Grujicic, M., He, T., Pandurangan, B.: Development and parameterization of an equilibrium material model for segmented polyurea. Multidiscip. Model. Mater. Struct. 7(2), 96–114 (2011)

    Article  Google Scholar 

  • Grujicic, M., d’Entremont, B., Pandurangan, B., Runt, J., Tarter, J., Dillon, G.: Concept-level analysis and design of polyurea for enhanced blast-mitigation performance. J. Mater. Eng. Perform. 21(10), 2024–2037 (2012a)

    Article  Google Scholar 

  • Grujicic, M., Yavari, R., Snipes, J.S., Ramaswami, S., Runt, J., Tarter, J., Dillon, G.: Molecular-level computational investigation of shock-wave mitigation capability of polyurea. J. Mater. Sci. 47(23), 8197–8215 (2012b)

    Article  Google Scholar 

  • Henningsen, J.: Polyurea: leading a revolution in coating technology. Paint Coat. Ind. 18(1), 28 (2002)

    Google Scholar 

  • Herman, F.M., et al.: Encyclopedia of Polymer Science and Engineering, vol. 2 (1985)

    Google Scholar 

  • Hirt, R.C., Searle, N.Z., Schmitt, R.G.: Ultraviolet degradation of plastics and the use of protective ultraviolet absorbers. Polym. Eng. Sci. 1(1), 21–25 (1961)

    Article  Google Scholar 

  • Hulme, A., Mills, N.J.: The analysis of weathering tests on industrial helmets moulded from coloured polyethylene. Plast. Rubber Compos. Process. Appl. 22(5), 285–303 (1994)

    Google Scholar 

  • Jain, A.: Strength/moisture relationship for interfaces and joints for robust prediction of reliability. Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles (2007)

  • Jain, A., Gupta, V.: Construction and characterization of stainless steel/polyurea/E-glass composite joints. Mech. Mater. 46, 16–22 (2012)

    Article  Google Scholar 

  • Jiao, T., Clifton, R.J., Grunschel, S.E.: High strain rate response of an elastomer. In: Shock Compression of Condensed Matter, vol. 845, pp. 809–812 (2005)

    Google Scholar 

  • Kim, H., et al.: Dynamic fracture energy of polyurea-bonded steel/E-glass composite joints. Mech. Mater. 45, 10–19 (2012)

    Article  Google Scholar 

  • Knauss, W.G., Zhao, J.: Improved relaxation time coverage in ramp-strain histories. Mech. Time-Depend. Mater. 11, 199–216 (2007)

    Article  Google Scholar 

  • Lakes, R.S.: Viscoelastic measurement techniques. Rev. Sci. Instrum. 75(4), 797–810 (2004)

    Article  Google Scholar 

  • Lampman, S.: Characterization and Failure Analysis of Plastics. ASM International, Materials Park (2003)

    Google Scholar 

  • Larché, J-F., et al.: Photo-oxidation of acrylic-urethane thermoset networks. Relating materials properties to changes of chemical structure. Polym. Degrad. Stab. 96(8), 1438–1444 (2011)

    Article  Google Scholar 

  • Larché, J-F., et al.: Photooxidation of polymers: relating material properties to chemical changes. Polym. Degrad. Stab. 97(1), 25–34 (2012)

    Article  Google Scholar 

  • Li, C., Lua, J.: A hyper-viscoelastic constitutive model for polyurea. Mater. Lett. 63(11), 877–880 (2009)

    Article  Google Scholar 

  • Mark, J.: Physical Properties of Polymers Handbook. Springer, New York (2007)

    Book  Google Scholar 

  • Matuana, L.M., Kamdem, D.P.: Accelerated ultraviolet weathering of PVC/wood-flour composites. Polym. Eng. Sci. 42(8), 1657–1666 (2002)

    Article  Google Scholar 

  • Osswald, T., Menges, G.: Materials Science of Polymers for Engineers, 2nd ed. Hanser, Munich (2003)

    Google Scholar 

  • Primeaux, D.J.: Polyurea elastomer technology: history, chemistry & basic formulating techniques. Primeaux Associates LLC (2004)

  • Qiao, J., et al.: Dynamic mechanical and ultrasonic properties of polyurea. Mech. Mater. 43(10), 598–607 (2011)

    Article  Google Scholar 

  • Rinaldi, R.G., Boyce, M.C., Weigand, S.J., Londono, D.J., Guise, M.W.: Microstructure evolution during tensile loading histories of a polyurea. J. Polym. Sci., Part B, Polym. Phys. 49(23), 1660–1671 (2011)

    Article  Google Scholar 

  • Roland, C.M., et al.: High strain rate mechanical behavior of polyurea. Polymer 48(2), 574–578 (2007)

    Article  MathSciNet  Google Scholar 

  • Rosu, D., Rosu, L., Cascaval, C.N.: IR-change and yellowing of polyurethane as a result of UV irradiation. Polym. Degrad. Stab. 94(4), 591–596 (2009)

    Article  Google Scholar 

  • Sabri, F., Sebelik, M.E., Meacham, R., Boughter, J.D. Jr, Challis, M.J., Leventis, N.: In vivo ultrasonic detection of polyurea crosslinked silica aerogel implants. PLoS ONE 8(6), e66348 (2013)

    Article  Google Scholar 

  • Sarva, S.S., et al.: Stress–strain behavior of a polyurea and a polyurethane from low to high strain rates. Polymer 48(8), 2208–2213 (2007)

    Article  Google Scholar 

  • Scheirs, J.: Compositional and Failure Analysis of Polymers: A Practical Approach. Willey, New York (2000)

    Google Scholar 

  • Schnapp, D.: Fluorescent lamp light bulb TLK40W 03. Don’s Bulbs. n.d. Web. 29 Oct. 2014, retrieved Oct. 2014a

  • Schnapp, D.: Fluorescent lamp light bulb TLK40W 05. Don’s Bulbs. n.d. Web. 29 Oct. 2014, retrieved Oct. 2014b

  • Sofronis, P.: The influence of mobility of dissolved hydrogen on the elastic response of a metal. J. Mech. Phys. Solids 43(9), 1385–1407 (1995)

    Article  Google Scholar 

  • Turton, T.J., White, J.R.: Effect of stabilizer and pigment on photo-degradation depth profiles in polypropylene. Polym. Degrad. Stab. 74(3), 559–568 (2001)

    Article  Google Scholar 

  • Whitten, I., Youssef, G.: The effect of ultraviolet radiation on ultrasonic properties of polyurea. Polym. Degrad. Stab. 123, 88–93 (2016)

    Article  Google Scholar 

  • Xue, L., Mock, W. Jr, Belytschko, T.: Penetration of DH-36 steel plates with and without polyurea coating. Mech. Mater. 42(11), 981–1003 (2010)

    Article  Google Scholar 

  • Yousif, E., Haddad, R.: Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus 2(1), 1 (2013)

    Article  Google Scholar 

  • Youssef, G.H.: Dynamic properties of polyurea. 2011. Ph.D. Dissertation, Department of Mechanical and Aerospace Engineering, UCLA, Los Angeles

  • Youssef, G., Gupta, V.: Dynamic response of polyurea subjected to nanosecond rise-time stress waves. Mech. Time-Depend. Mater. 16(3), 317–328 (2012a)

    Article  Google Scholar 

  • Youssef, G., Gupta, V.: Dynamic tensile strength of polyurea. J. Mater. Res. 27(2), 494–499 (2012b)

    Article  Google Scholar 

  • Zhao, J., Knauss, W.G., Ravichandran, G.: Applicability of the time–temperature superposition principle in modeling dynamic response of a polyurea. Mech. Time-Depend. Mater. 11(3–4), 289–308 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results was supported in part by the United States Department of Defense under Grant Agreement No. W911NF-14-1-0039. The authors acknowledge the assistance of Dr. Steve Barlow and use of equipment at the San Diego State University Electron Microscopy Facility acquired by NSF instrumentation grant DBI-0959908.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Youssef.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Youssef, G., Whitten, I. Dynamic properties of ultraviolet-exposed polyurea. Mech Time-Depend Mater 21, 351–363 (2017). https://doi.org/10.1007/s11043-016-9333-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-016-9333-9

Keywords

Navigation