Skip to main content
Log in

Stress relaxation of a polycarbonate blend after hygrothermal aging

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

This work has studied the competing effects of physical aging and moisture absorption on the relaxation behaviour of a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) polymer blend after being subjected to both thermal and hygrothermal aging. Physical aging was simulated by thermal aging the blend at temperatures up to 80 C which is below the glass transition temperatures of ABS and PC in the blend, respectively. Nine different combinations of relative humidity and temperature were investigated for hygrothermal aging. In both cases, two sets of aging times were applied: “short” term (≤16 hour aging) and “long” term (@168 hour aging). The short term tests were used to generate momentary master curves by applying time/aging-time and time/moisture superposition principles. Using the Kohlrausch–Williams–Watts (KWW) expression, the model parameters determined from curve fitting master curves were used to predict longer term stress relaxation behaviour. The predictions, verified against experimental results, showed reasonable agreement for all hygothermal exposure conditions except for full immersion. Moreover, comparisons of KWW parameters for both short and long term tests suggested that physical aging processes dominate absorbed moisture effects in terms of influencing viscoelastic behaviour, especially when the aging temperature approaches 80 C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

E :

modulus

E o :

initial modulus

T :

temperature

T a :

aging temperature

T g :

glass transition temperature

a H :

hygrothermal horizontal shift factor

a ta :

thermal horizontal shift factor

a v :

vertical shift factor

m :

moisture uptake

m d :

mass of dry sample

m w :

mass of wet sample

t :

time

t a :

aging time

\(t_{\mathrm{a}}^{o}\) :

aging time before stress relaxation period

β :

shape parameter

tanδ :

ratio of storage modulus to loss modulus

λ :

effective time

μ H :

hygrothermal shift rate

μ ta :

thermal shift rate

τ :

relaxation time constant

References

  • ASTM D 1238: Standard test method for melt flow rates of thermoplastics by extrusion plastometer (1991). doi:10.1520/D1238-10

  • ASTM D 5023-07: Standard test method for plastics: dynamic mechanical properties: in flexure (three-point bending) (2007). doi:10.1520/D5023-07

  • ASTM D 618-08: Standard practice for conditioning plastics for testing (2008). doi:10.1520/D0618-08

  • Bair, H.E., Falcone, D.R., Hellman, M.Y., Johnson, G.E., Kelleher, P.G.: Hydrolysis of polycarbonate to yield BPA. J. Appl. Polym. Sci. 26(6), 1777–1786 (1981). doi:10.1002/app.1981.070260603

    Article  Google Scholar 

  • Bradshaw, R.D., Brinson, L.C.: Mechanical response of linear viscoelastic composite laminates incorporating non-isothermal physical aging effects. Compos. Sci. Technol. 59(9), 1411–1427 (1999). doi:10.1016/S0266-3538(98)00179-1

    Article  Google Scholar 

  • Brinson, L.C., Gates, T.S.: Effects of physical aging on long-term creep of polymers and polymer matrix composites. Int. J. Solids Struct. 32(6–7), 827–846 (1995). doi:10.1016/0020-7683(94)00163-Q

    Article  MATH  Google Scholar 

  • Comyn, J.: In: Kinloch, A.J. (ed.) Durability of Structural Adhesives. Applied Science Publishers, London (1983)

    Google Scholar 

  • DMA 2980: Dynamic mechanical analyzer operator’s manual. TA Instruments (1997)

  • Ferrillo, R.G., Achorn, P.J.: Comparison of thermal techniques for glass transition assignment. II. Commercial polymers. J. Appl. Polym. Sci. 64(1), 191–195 (1997). doi:10.1002/(SICI)1097-4628(19970404)64:1<191::AID-APP17>3.0.CO;2-7

    Article  Google Scholar 

  • Gallucci, R.R.: Polycarbonate Hydrolysis, pp. 903–907. ANTEC, Chicago (2009)

    Google Scholar 

  • Gates, T.S., Brinson, L.C., Whitley, K.S., Bai, T.: Aging during elevated temperature stress relaxation of IM7/K3B composite. ASTM Spec. Tech. Publ. 1357, 141–159 (2000)

    Google Scholar 

  • Ghorbel, I., Akele, N., Thominette, F., Spiteri, P., Verdu, J.: Hydrolytic aging of polycarbonate. II. Hydrolysis kinetics, effect of static stresses. J. Appl. Polym. Sci. 55(1), 173–179 (1995a). doi:10.1002/app.1995.070550119

    Article  Google Scholar 

  • Ghorbel, I., Thominette, F., Spiteri, P., Verdu, J.: Hydrolytic aging of polycarbonate. I. Physical aspects. J. Appl. Polym. Sci. 55(1), 163–171 (1995b). doi:10.1002/app.1995.070550118

    Article  Google Scholar 

  • Golovoy, A., Zinbo, M.: Water sorption and hydrolytic stability of polycarbonates. Polym. Eng. Sci. 29(24), 1733–1737 (1989). doi:10.1002/pen.760292402

    Article  Google Scholar 

  • Greco, R., Astarita, M.F., Dong, L., Sorrentino, A.: Polycarbonate/ABS blends: processability, thermal properties, and mechanical and impact behavior. Polym. Adv. Technol. 13(4), 259–274 (1994). doi:10.1002/adv.1994.060130402

    Article  Google Scholar 

  • Guo, Y., Bradshaw, R.D.: Isothermal physical aging characterization of polyether-ether-ketone (PEEK) and polyphenylene sulfide (PPS) films by creep and stress relaxation. Mech. Time-Depend. Mater. 11(1), 61–89 (2007). doi:10.1007/s11043-007-9032-7

    Article  Google Scholar 

  • Guo, Y., Wang, N., Bradshaw, R.D., Brinson, L.C.: Modeling mechanical aging shift factors in glassy polymers during nonisothermal physical aging. I. Experiments and KAHR-ate model prediction. J. Polym. Sci., Part B, Polym. Phys. 47(3), 340–352 (2009). doi:10.1002/polb.21643

    Article  Google Scholar 

  • Haghighi-Yazdi, M., Tang, J.K.Y., Lee-Sullivan, P.: Moisture uptake of a polycarbonate blend exposed to hygrothermal aging. Polym. Degrad. Stab. 96(10), 1858–1868 (2011). doi:10.1016/j.polymdegradstab.2011.07.007

    Article  Google Scholar 

  • Ishisaka, A., Kawagoe, M.: Examination of the time-water content superposition on the dynamic viscoelasticity of moistened polyamide 6 and epoxy. J. Appl. Polym. Sci. 93(2), 560–567 (2004). doi:10.1002/app.20465

    Article  Google Scholar 

  • LaPlante, G., Lee-Sullivan, P.: Moisture effects on FM300 structural film adhesive: stress relaxation, fracture toughness, and dynamic mechanical analysis. J. Appl. Polym. Sci. 95(5), 1285–1294 (2005). doi:10.1002/app.21353

    Article  Google Scholar 

  • Lee, A., McKenna, G.B.: Anomalous aging in two-phase systems: creep and stress relaxation in rubber toughened epoxies. J. Polym. Sci., Part B, Polym. Phys. 35, 1167–1174 (1997). doi:10.1002/(SICI)1099-0488(199706)35:8<1167::AID-POLB1>3.0.CO;2-R

    Article  Google Scholar 

  • Lee-Sullivan, P., Dykeman, D.: Guidelines for performing storage modulus measurements using the TA Instruments DMA 2980 three-point bend mode. I. Amplitude effects. Polym. Test. 19(2), 155–164 (2000). doi:10.1016/S0142-9418(98)00083-X

    Article  Google Scholar 

  • Lee-Sullivan, P., Dykeman, D., Shao, Q.: Mechanical relaxations in heat-aged polycarbonate. Part I: comparison between two molecular weights. Polym. Eng. Sci. 43(2), 369–382 (2003). doi:10.1002/pen.10031

    Article  Google Scholar 

  • Legrand, D.G.: Crazing, yielding, and fracture of polymers. I. Ductile brittle transition in polycarbonate. J. Appl. Polym. Sci. 13(10), 2129–2147 (1969). doi:10.1002/app.1969.070131010

    Article  Google Scholar 

  • Leibler, L., Sekimoto, K.: On the sorption of gases and liquids in glassy polymers. Macromolecules 26(25), 6937–6939 (1993). doi:10.1021/ma00077a034

    Article  Google Scholar 

  • Ma, X., Jansen, K.M.B., Ernst, L.J.: Moisture effects on the creep of thermosetting IC packaging polymers. In: EuroSimE, vol. 2006 (2006). doi:10.1109/ESIME.2006.1644008

    Google Scholar 

  • Matsuoka, S.: Relaxation Phenomena in Polymers, Chap. 1. Oxford University Press, New York (1992)

    Google Scholar 

  • McBrierty, V.J., Martin, S.J., Karasz, F.E.: Understanding hydrated polymers: the perspective of NMR. J. Mol. Liq. 80(2–3), 179–205 (1999). doi:10.1016/S0167-7322(99)00023-9

    Google Scholar 

  • Menard, K.P.: Dynamic Mechanical Analysis: A Practical Introduction, 2nd edn., Chap. 4. Taylor & Francis Group, Boca Raton (2008)

    Book  Google Scholar 

  • Miyano, Y., Nakada, M., Kasamori, M., Muki, R.: Effect of physical aging on the creep deformation of an epoxy resin. Mech. Time-Depend. Mater. 4(1), 9–20 (2000). doi:10.1023/A:1009812115971

    Article  Google Scholar 

  • Morgan, R.J., O’Neal, J.E.: The relationship between the physical structure and the mechanical properties of polycarbonate. J. Polym. Sci., Part B, Polym. Phys. 14(6), 1053–1076 (1976). doi:10.1002/pol.1976.180140609

    Article  Google Scholar 

  • Morland, L.W., Lee, E.H.: Stress analysis for linear viscoelastic materials with temperature variation. Trans. Soc. Rheol. 4, 233–263 (1960). doi:10.1122/1.548856

    Article  MathSciNet  Google Scholar 

  • Nogueira, P., Ramírez, C., Torres, A., Abad, M.J., Cano, J., López, J., López-Bueno, I., Barral, L.: Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J. Appl. Polym. Sci. 80(1), 71–80 (2001). doi:10.1002/1097-4628(20010404)80:1<71::AID-APP1077>3.0.CO;2-H

    Article  Google Scholar 

  • O’Connell, P.A., McKenna, G.B.: Large deformation response of polycarbonate: time-temperature, time-aging time, and time-strain superposition. Polym. Eng. Sci. 37(9), 1485–1495 (1997). doi:10.1002/pen.11797

    Article  Google Scholar 

  • Phillips, J.C.: Stress relaxation of elongated strips of poly(vinylidene fluoride) in ethyl acetate vapor. Polym. Eng. Sci. 37(2), 291–305 (1997). doi:10.1002/pen.11671

    Article  Google Scholar 

  • Pryde, C.A., Hellman, M.Y.: Solid state hydrolysis of bisphenol-A polycarbonate—1. Effect of phenolic end groups. J. Appl. Polym. Sci. 25(11), 2573–2587 (1980). doi:10.1002/app.1980.070251114

    Article  Google Scholar 

  • Read, B.E.: Analysis of creep and physical aging in glassy polymers. J. Non-Cryst. Solids 131–133(1), 408–419 (1991). doi:10.1016/0022-3093(91)90334-3

    Article  Google Scholar 

  • Schwarzl, F.R., Kaschta, J.: Physical aging and shear creep of poly(carbonate). Mech. Time-Depend. Mater. 2(1), 13–36 (1998). doi:10.1023/A:1009703115937

    Article  Google Scholar 

  • Smith, K.E., Parks, S.S., Hyjek, M.A., Downey, S.E., Gall, K.: The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions. Polymer 50(21), 5112–5123 (2009). doi:10.1016/j.polymer.2009.08.040

    Article  Google Scholar 

  • Spinu, I., McKenna, G.B.: Physical aging of thin films of nylon and PET. J. Plast. Film Sheeting 13(4), 311–326 (1997). doi:10.1177/875608799701300407

    Google Scholar 

  • Struik, L.C.E.: Physical Aging in Amorphous Polymers and Other Materials. Elsevier, Amsterdam (1978)

    Google Scholar 

  • Tang, J.K.Y., Lee-Sullivan, P.: Observations of physical aging in a polycarbonate and acrylonitrile-butadiene-styrene blend. J. Appl. Polym. Sci. 110(1), 97–108 (2008). doi:10.1002/app.28554

    Article  Google Scholar 

  • Van Driel, W.D., Habets, P.J.J.H.A., Van Gils, M.A.J., Zhang, G.Q.: Characterization of interface strength as function of temperature and moisture. In: IEEE 6th Int. Conf. Electron. Packag. Technol., Shenzhen, China, pp. 687–692. (2005a). doi:10.1109/ICEPT.2005.1564623

    Google Scholar 

  • Van Driel, W.D., Van Gils, M.A.J., Zhang, G.Q.: Prediction of delamination in micro-electronic packaging. In: IEEE 6th Int. Conf. Electron. Packag. Technol., Shenzhen, China, pp. 676–681 (2005b). doi:10.1109/ICEPT.2005.1564624

    Google Scholar 

  • Veazie, D.R., Gates, T.S.: Tensile and compressive creep of a thermoplastic polymer and the effects of physical aging on the composite time-dependent behaviour. ASTM Spec. Tech. Publ. 1357, 160–175 (2000)

    Google Scholar 

  • Vleeshouwers, S., Jamieson, A.M., Simha, R.: Effect of physical aging on tensile-stress relaxation and tensile creep of cured epon-828 epoxy adhesives in the linear viscoelastic region. Polym. Eng. Sci. 29(10), 662–670 (1989). doi:10.1002/pen.760291008

    Article  Google Scholar 

  • Williams, G., Watts, D.C.: Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 66, 80–85 (1970). doi:10.1039/TF9706600080

    Article  Google Scholar 

  • Wong, E.H., Rajoo, R., Koh, S.W., Lim, T.B.: The mechanics and impact of hygroscopic swelling of polymeric materials in electronic packaging. J. Electron. Packag. 124(2), 122–126 (2002). doi:10.1115/1.1461367

    Article  Google Scholar 

  • Zhou, S.-M., Tashiro, K., Hongo, T., Shirataki, H., Yamane, C., Ii, T.: Influence of water on structure and mechanical properties of regenerated cellulose studied by organized combination of infrared spectra, X-ray diffraction, and dynamic viscoelastic data measured as functions of temperature and humidity. Macromolecules 34(5), 1274–1280 (2001a). doi:10.1021/ma001507x

    Article  Google Scholar 

  • Zhou, S.-M., Tashiro, K., Ii, T.: Moisture effect on structure and mechanical property of nylon 6 as studied by the time-resolved and simultaneous measurements of FT-IR and dynamic viscoelasticity under the controlled humidity at constant scanning rate. Polym. J. 33(4), 344–355 (2001b). doi:10.1295/polymj.33.344

    Article  Google Scholar 

  • Zhou, S.-M., Tashiro, K., Ii, T.: Confirmation of universality of time-humidity superposition principle for various water-absorbable polymers through dynamic viscoelastic measurements under controlled conditions of relative humidity and temperature. J. Polym. Sci., Part B, Polym. Phys. 39(14), 1638–1650 (2001c). doi:10.1002/polb.1135

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Materials Laboratory at Research in Motion (RIM), Waterloo, Ontario for providing materials and technical support over the past three years. Funding from RIM and the Natural Science and Engineering Research Council of Canada (NSERC) Research and Development Collaborative Research Grant program for this work is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pearl Lee-Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haghighi-Yazdi, M., Lee-Sullivan, P. Stress relaxation of a polycarbonate blend after hygrothermal aging. Mech Time-Depend Mater 17, 171–193 (2013). https://doi.org/10.1007/s11043-012-9177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-012-9177-x

Keywords

Navigation