Skip to main content
Log in

A non-equilibrium thermodynamic model for the crack propagation rate

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

A non-equilibrium thermodynamics-based evolution model describes the nonsteady, crack propagation rate for both brittle fracture and for viscoplastic behavior at the crack tip. This model for dynamic crack propagation under dynamic or quasi-static loading is developed from an energy functions viewpoint and extends a non-equilibrium thermodynamics construction based on a instantaneous maximum dissipation criterion and a thermodynamic relaxation modulus that permits multi-scale modeling. The evolution equations describing the non-equilibrium fracture process are generated from a generalized energy function whose zero gradient manifold gives the assumed quasi-static crack propagation equations. The class of models produced includes the classical Freund model and a modification that is consistent with the experimental maximum crack velocity. In unstable propagation, the non-equilibrium process is repelled from the quasi-static manifold. If the initial state is stable, then the crack growth process approaches the quasi-static manifold and eventually the crack is arrested. An application of the construction gives the craze growth in PMMA. A simple viscoplastic model for metals predicts the change in temperature at the crack tip as the crack grows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berezovski, A., Maugin, G.A.: On the propagation velocity of a straight brittle crack. Int. J. Fract. 143, 135–142 (2007)

    Article  Google Scholar 

  • Bernstein, B., Toupin, R.A.: Some properties of the Hessian matrix of a strictly convex function. J. Reine Angew. Math. 210, 65–72 (1962)

    MATH  MathSciNet  Google Scholar 

  • Bui, H.D., Ehrlacher, A., Nguyen, Q.S.: Propagation de fissure en thermoélasticité dynamique. J. Méc. 19, 697–723 (1980)

    MATH  MathSciNet  Google Scholar 

  • Christensen, R., Miyano, Y.: Deterministic and probabilistic lifetimes from kinetic crack growth-generalized forms. Int. J. Fract. 143, 35–39 (2007)

    Article  Google Scholar 

  • Dally, J.W., Fourney, W.L., Irwin, G.R.: On the uniqueness of the stress intensity factor—crack velocity relationship. Int. J. Fract. 27, 159–165 (1985)

    Article  Google Scholar 

  • Döll, W.: Application of an energy balance and an energy method to dynamic crack propagation. Int. J. Fract. 12(4), 595–605 (1976)

    Google Scholar 

  • Döll, W.: Kinetics of crack tip craze zone before and during fracture. Polym. Eng. Sci. 24(10), 798–808 (1984)

    Article  Google Scholar 

  • Döll, W., Könczöl, L., Schinker, M.G.: Zur zeit- und temperaturabhängigen Vertreckung von Polymermaterial vor Rißspitzen bei langzeiter statischer Belastung. Colloid Polym. Sci. 259, 171–181 (1981)

    Article  Google Scholar 

  • Freed, A.D., Walker, K.P.: Viscoplasticity with creep and plasticity bounds. Int. J. Plast. 9, 213–242 (1993)

    Article  MATH  Google Scholar 

  • Freund, L.B.: Dynamic Fracture Mechanics. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Fuller, K.N.G., Fox, P.G., Field, J.E.: The temperature rise at the tip of fast-moving cracks in glassy polymers. Proc. R. Soc. Lond. A 341, 537–557 (1975)

    Article  Google Scholar 

  • Gao, H.: A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44, 1453–1474 (1996)

    Article  Google Scholar 

  • Gibbs, J.W.: A method of geometrical representation of the thermodynamic properties of substances by means of surfaces. In: The Collected Works, vol. 1. Yale University Press, New Haven (1948) (Originally published in Transactions of the Connecticut Academy II, pp. 383–404 (1873))

    Google Scholar 

  • Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. A 221, 163–198 (1920)

    Article  Google Scholar 

  • Griffith, A.A.: The theory of rupture. In: Proceedings of the First International Congress for Applied Mechanics, Delft, pp. 55–63, 1924

  • Gurtin, M.E.: Thermodynamics and the Griffith criterion for brittle fracture. Int. J. Solids Struct. 15, 553–560 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  • Gurtin, M.E.: Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York (2000)

    Google Scholar 

  • Haslach, H.W. Jr.: Geometrical structure of the non-equilibrium thermodynamics of homogeneous systems. Rep. Math. Phys. 39, 147–162 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  • Haslach, H.W. Jr.: A non-equilibrium thermodynamic geometric structure for thermoviscoplasticity with maximum dissipation. Int. J. Plast. 18, 127–153 (2002)

    Article  MATH  Google Scholar 

  • Haslach, H.W. Jr.: Nonlinear viscoelastic, thermodynamically consistent, models for biological soft tissue. Biomech. Model. Mechanobiol. 3(3), 172–189 (2005)

    Article  Google Scholar 

  • Haslach, H.W. Jr., Zeng, N.-N.: Maximum dissipation evolution equations for nonlinear thermoviscoelasticity. Int. J. Non-linear Mech. 34, 361–385 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  • Hellan, K.: Introduction to Fracture Mechanics. McGraw-Hill, New York (1984)

    Google Scholar 

  • Lemaitre, J., Chaboche, J.-L.: Mechanics of Solid Materials. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  • Maugin, G.A.: The Thermomechanics of Plasticity and Fracture. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  • Muschik, W., Berezovski, A.: Thermodynamic interaction between two discrete systems in non-equilibrium. J. Non-equilib. Thermodyn. 29, 237–255 (2004)

    Article  MATH  Google Scholar 

  • Ogden, R.W.: Non-linear Elastic Deformations. Ellis-Horwood, Chichester (1984)

    Google Scholar 

  • Ravi-Chandar, K.: Dynamic Fracture. Elsevier, Amsterdam (2004)

    Google Scholar 

  • Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture—III. Steady state crack propagation and crack branching. Int. J. Fract. 26, 141–154 (1984)

    Article  Google Scholar 

  • Rice, J.R.: Thermodynamics of the quasi-static growth of Griffith cracks. J. Mech. Phys. Solids 26, 61–78 (1978)

    Article  MATH  Google Scholar 

  • Slepyan, L.I.: Principle of maximum energy dissipation rate in crack dynamics. J. Mech. Phys. Solids 41, 1019–1033 (1993)

    Article  MATH  Google Scholar 

  • Weichert, R., Schönert, K.: On the temperature rise at the tip of a fast running crack. J. Mech. Phys. Solids 22, 127–133 (1974)

    Article  Google Scholar 

  • Weichert, R., Schönert, K.: Heat generation at the tip of a moving crack. J. Mech. Phys. Solids 26, 151–161 (1978)

    Article  Google Scholar 

  • Williams, J.G.: The thermal properties of a plastic zone. Appl. Mater. Res. 4, 104–106 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry W. Haslach Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haslach, H.W. A non-equilibrium thermodynamic model for the crack propagation rate. Mech Time-Depend Mater 14, 91–110 (2010). https://doi.org/10.1007/s11043-009-9094-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-009-9094-9

Keywords

Navigation