Skip to main content
Log in

Stability analysis of quasi-brittle materials – creep under multiaxial loading

  • Published:
Mechanics of Time-Dependent Materials Aims and scope Submit manuscript

Abstract

The aim of this paper is to develop a simple time-dependent Continuum Damage Mechanics model applied to quasi-brittle materials such as rock or concrete. The three-dimensional constitutive visco-damage model describes phenomena like relaxation, creep and rate-dependent loading using a unified framework. A material stability analysis devoted to creep tests highlights a general creep stress stability domain. This convex domain is connected to the property of the associated time-independent Continuum Damage Mechanics model. More particularly, the boundary of this domain in the creep stress space coincides with the invertibility condition of the constitutive matrix considering infinitely slow loading. Phenomenon as creep failure under high-sustained load is explained quite simply within stability theory. Creep failure appears as the manifestation of a saddle-node bifurcation phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barpi, F., Valente, S.: A fractional order rate approach for modeling concrete structures subjected to creep and fracture. Int. J. Solids Structures 41, 2607–2621 (2004)

    Article  MATH  Google Scholar 

  • Carlson, R.L.: Creep-induced tensile instability. J. Mech. Engng. Sc. 7, 228–229 (1965)

    Article  Google Scholar 

  • Carol, I., Willam, K.: Spurious energy dissipation/generation in stiffness recovery models for elastic degradation and damage. Int. J. Solids Structures 33(20–22), 2939–2957 (1996)

    Article  MATH  Google Scholar 

  • Challamel, N., Lanos, C., Casandjian, C.: Stability and creep damage of quasi-brittle materials. International Congress of Theoretical and Applied Mechanics, Warsaw (2004)

    Google Scholar 

  • Challamel, N., Pijaudier-Cabot, G.: Stabilité et dynamique d'un oscillateur endommageable. Revue Franĉaise de Génie Civil 8(4), 483–505 (2004)

    Article  Google Scholar 

  • Challamel, N., Lanos, C., Casandjian, C.: Creep failure in concrete as a bifurcation phenomenon. Int. J. Damage Mech. 14, 5–24 (2005a)

    Article  Google Scholar 

  • Challamel, N., Lanos, C., Casandjian, C.: Creep damage modelling for quasi-brittle materials. Eur. J. Mech. A/Solids 24, 593–613 (2005b)

    Article  MATH  Google Scholar 

  • Challamel, N., Lanos, C., Casandjian, C.: Strain-based anisotropic damage modelling and unilateral effects. Int. J. Mech. Sc. 47(3), 459–473 (2005c)

    Article  Google Scholar 

  • Challamel, N., Pijaudier-Cabot, G.: Stability and dynamics of a plastic softening oscillator. Int. J. Solids Structures, In Press (2006)

  • Chambon, R., Caillerie, D.: Existence and uniqueness theorems for boundary value problems involving incrementally non linear models. Int. J. Solids Structures 36, 5089–5099 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, W.Z., Zhu, W.S., Shao, J.F.: Damage coupled time-dependent model of a jointed rock mass and application to large underground cavern excavation. Int. J. Rock Mech. & Mining Sc. 41, 669–677 (2004)

    Article  Google Scholar 

  • Chrzanowski, M., Dusza, E., Kolczuga, M.: On the creep rupture analysis. Arch. Mech. 39(1–2), 85–93 (1987)

    MATH  Google Scholar 

  • Darve, F.: Stability and uniqueness in geomaterials constitutive modelling. In Chambon R, Desrues J, Vardoulakis I. (eds.), Localisation and Bifurcation Theory for Soils and Rocks. Balkema, Rotterdam, pp. 73–88 (1994)

    Google Scholar 

  • Darve, F., Laouafa, F.: Instabilities in granular materials and application to landslides. Mech. Cohes-Frict. Mater. 5, 627–652 (2000)

    Article  Google Scholar 

  • Desoyer, T., Cormery, F.: On uniqueness and localization in elastic-damage materials. Int. J. Solids Structures 31(5), 733–744 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Dragon, A., Mroz, Z.: A model for plastic creep of rock-like materials accounting for the kinetics of fracture. Int. J. Rock Mech. Mining Sc. & Geomech. Abstr. 16, 253–259 (1979)

    Google Scholar 

  • Dubé, J.F., Pijaudier-Cabot, G., Laborderie, C.: Rate dependent damage model for concrete in dynamics. J. Eng. Mech. 122(10), 939–947 (1996)

    Article  Google Scholar 

  • Dunne, F.P.E., Othman, A.M., Hall, F.R., Hayhurst, D.R.: Representation of uniaxial creep curves using Continuum Damage Mechanics. Int. J. Mech. Sc. 32(11), 945–957 (1990)

    Article  Google Scholar 

  • Etse, G., Willam, K.: Failure analysis of elastoviscoplastic material models. J. Eng. Mech. 125(1), 60–69 (1999)

    Article  Google Scholar 

  • Griggs, D.: Creep of rocks. J. Geology 47(3), 225–251 (1939)

    Article  MathSciNet  Google Scholar 

  • Guckenheimer, J.A., Holmes, P.J.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Springer, Berlin (1987)

    Google Scholar 

  • Habib, P.: La rupture différée en mécanique des roches. Revue Franĉaise de Géotechnique 108, 71–74 (2004)

    Google Scholar 

  • Hayhurst, D.R.: Creep rupture under multiaxial state of stress. J. Mech. Phys. Solids 20, 381–390 (1972)

    Article  Google Scholar 

  • Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)

    Article  MATH  Google Scholar 

  • Hognestad, E., Hanson, N.W., McHenry, D.: Concrete stress distribution in ultimate strength design. ACI Journal 27(4), 455–479 (1955)

    Google Scholar 

  • Hueckel, T., Maier, G.: Incremental boundary value problems in the presence of coupling of elastic and plastic deformations: a rock mechanics oriented theory. Int. J. Solids Structures 13, 1–15 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Imposinato, S., Nova, R.: An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mech. Cohesive Frict. Mat. 3, 65–87 (1998)

    Article  Google Scholar 

  • Janson, J., Hult, J.: Fracture mechanics and damage mechanics – a combined approach. J. Mécanique Appliquée 1(1), 69–84 (1977)

    Google Scholar 

  • Ju, J.W.: On energy-based coupled elastoplastic damage theories: constitutive modelling and computational aspects. Int. J. Solids Structures 25(7), 803–833 (1989)

    Article  MATH  Google Scholar 

  • Kachanov, L.M.: On the creep fracture time, Izv. AN SSSR. Ofd. Tekhn. Nauk. 8, 26–31 (1958) (available in Int. J. Fracture 97(1–4), 11–18 (1999)

    Google Scholar 

  • Krajcinovic, D.: Creep of structures – a continuous damage mechanics approach. J. Struct. Mech. 11(1), 1–11 (1983)

    Google Scholar 

  • Kuznetsov, Y.A.: Elements of applied bifurcation theory, Third Edition, Springer, Berlin. (2004)

    MATH  Google Scholar 

  • La Salle, J., Lefschetz, S.: Stability by Liapunov's direct method with applications, Academic Press, N.Y. (1961)

    MATH  Google Scholar 

  • Leckie, F.A.: The constitutive equations of continuum creep damage mechanics. Phil. Trans. R. Soc. London A. 288, 27–47 (1978)

    Article  Google Scholar 

  • Litewka, A., Hult, J.: One-parameter CDM model for creep rupture prediction. Eur. J. Mech. A(Solids 8(3), 185–200 (1989)

    Google Scholar 

  • Mazars, J.: A description of micro and macroscale damage of concrete structures. Eng. Fract. Mech. 25(5–6), 729–737 (1986)

    Article  Google Scholar 

  • Mazars, J., Pijaudier-Cabot, G.: From damage to fracture mechanics and conversely: A combined approach. Int. J. Solids Structures 33, 3327–3342 (1996)

    Article  MATH  Google Scholar 

  • Murakami, S., Liu, Y.: Mesh-dependence in local approach to creep fracture. Int. J. Damage Mech. 4, 230–250 (1995)

    Article  Google Scholar 

  • Odqvist, F.K.G., Hult, J.: Some aspects of creep rupture. Arkiv för Fysik 19(26), 379–382 (1961)

    MathSciNet  Google Scholar 

  • Omar, M., Pijaudier-Cabot, G., Loukili, A.: Etude comparative du couplage endommagement-fluage. Revue Franĉaise de Génie Civil 8(4), 457–481 (2004)

    Article  Google Scholar 

  • Ortiz, M.: A constitutive theory for the inelastic behaviour of concrete. Mech. Mat. 4, 67–93 (1985)

    Article  Google Scholar 

  • Ostrowski, A., Taussky, O.: On the variation of the determinant of a positive definite matrix. Neder. Akadem. Wet. Proc. A54, 383–385 (1951)

    MathSciNet  Google Scholar 

  • Perzyna, P.: The constitutive equation for rate-sensitive plastic materials. Q. Appl. Math. 20, 321–332 (1963)

    MathSciNet  MATH  Google Scholar 

  • Pijaudier-Cabot, G., Bazant, Z. P.: Nonlocal damage theory. J. Eng. Mech. Div., ASCE 113, 1512–1533 (1987)

    Article  Google Scholar 

  • Poh, K.W.: General creep-time equation. J. Mat. Civil Eng. 10(2), 118–120 (1998)

    Article  Google Scholar 

  • Rabotnov, Y.N.: Creep problems in structural members, North-Holland Publishing Company (1969)

  • Raniecki, B., Bruhns, O.T.: Bounds to bifurcation stresses in solids with non-associated plastic flow rule at finite strain. J. Mech. Phys. Solids 29, 153–172 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Rizzi, E., Carol, I., Willam, K.: Localization analysis of elastic degradation with application to scalar damage. J. Eng. Mech. 121(4), 541–554 (1995)

    Article  Google Scholar 

  • Runesson, K., Mrosz, Z.: A note on nonassociated plastic flow rules. Int. J. Plasticity 5, 639–658 (1989)

    Article  MATH  Google Scholar 

  • Rüsch, H.: Researches toward a general flexural theory for structural concrete. ACI Journal 57(1), 1–28 (1960)

    Google Scholar 

  • Saanouni, K., Chaboche, J.L., Lesne, P.M.: On the creep crack growth prediction by a non-local damage formulation. Eur. J. Mech. A(Solids 8, 437–459 (1989)

    MATH  Google Scholar 

  • Scholz, C.H.: Mechanism of creep in brittle rock, J. Geophysical Research 73(10), 3295–3302 (1968)

    Article  Google Scholar 

  • Storakers, B.: On uniqueness and stability under configuration-dependent loading of solids with or without a natural time. J. Mech. Phys. Solids 25, 269–287 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Telega, J.J.: Dual extremum principles in rate boundary value problems of non-associated plasticity. Int. J. Eng. Sc. 17, 215–226 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Voyiadjis, G.Z., Abu Al-Rub, R.K., Palazotto, A.N.: Thermodynamic framework for coupling of non-local viscoplasticity and non-local anisotropic viscodamage for dynamic localization problems using gradient theory. Int. J. Plasticity 20, 981–1038 (2004)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noël Challamel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Challamel, N., Lanos, C. & Casandjian, C. Stability analysis of quasi-brittle materials – creep under multiaxial loading. Mech Time-Depend Mater 10, 35–50 (2006). https://doi.org/10.1007/s11043-006-9010-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11043-006-9010-5

Keywords

Navigation