Skip to main content
Log in

Fusing color, depth and histogram maps for saliency detection

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

A noval scheme is presented to identify image’s saliency. The proposed scheme formalizes the saliency map using color, depth along with input histogram. The color saliency map assumes that the salient objects in an image are usually more colorful than objetcs that are not salient. Likewise the salient objects are usually found closer to the camera during acquisition, therefore the transmission map is also utilized for saliency detection. The third map is estimated from histogram. The observation of this histogram that the salient intensities appear less frequently compared with the background intensity levels. These three maps are then fused and filtered in order to yield a smooth saliency map. Experiments prove that proposed scheme attains state of the art performance on different images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Achanta R, Hemami S, Estrada F, Süsstrunk S (2009) Frequency-tuned salient region detection. IEEE Conf Comput Vis Pattern Recogn, 1597–1604

  2. Cheng M, Mitra N J, Huang ., Torr P H S, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37 (3):569–582

  3. Desingh K, Krishna K M, Rajan D, Jawahar C V (2013) Depth really matters: improving visual salient region detection with depth. British Mach Vis Conf, 1–11

  4. Fang Y, Wang J, Narwaria M, Le Callet P, Lin W (2014) Saliency detection for stereoscopic images. IEEE Trans Image Process 23(6):2625–2636

    Article  MathSciNet  Google Scholar 

  5. Feng J, Wei Y, Tao L, Zhang C, Sun J (2011) Salient object detection by composition, Int Conf Comput Vis, Barcelona, 1028–1035

  6. Fu H, Xu D, Lin S, Liu J (2015) Object-based RGBD image co-segmentation with mutex constraint. IEEE Conf Comput Vis Pattern Recogn, 4428–4436

  7. Guo F, Shen J, Li X (2014) Learning to detect stereo saliency. IEEE Int Conf Multimed Expo, 1–6

  8. Hadizadeh H, Baji I V (2014) Saliency-aware video compression. IEEE Trans Image Process 23(1):19–33

    Article  MathSciNet  Google Scholar 

  9. Harel J, Koch C, Perona P (2006) Graph-based visual saliency. NIPS Conf Advan Neural Inform Process Syst, 545–552

  10. He K, Sun J (2015) Fast guided filter. [online] Available: 1505.00996

  11. Hu W, Hu R, Xie N, Ling H, Maybank S (2014) Image classification using multi scale information fusion based on saliency driven nonlinear diffusion filtering. IEEE Trans Image Process 23(4):1513–1526

    Article  MathSciNet  Google Scholar 

  12. Imamoglu N, Lin W, Fang Y (2013) A saliency detection model using low-level features based on wavelet transform. IEEE Trans Multimed 15(1):96–105

    Article  Google Scholar 

  13. Itti L, Koch C, Niebur E (1998) A model of saliency-based visual attention for rapid scene analysis. IEEE Trans Pattern Anal Mach Intell 20(11):1254–1259

    Article  Google Scholar 

  14. Jiang B, Zhang L, Lu H, Yang C, Yang M-H (2013) Saliency detection via absorbing Markov chain. ICCV, 1665–1672

  15. Jiang B, Zhang L, Lu H, Yang C, Yang M-H (2013) Saliency detection via absorbing markov chain. IEEE Int Conf Comput Vis, 665–1672

  16. Ju R, Ge L, Geng W, Ren T, Wu G (2014) Depth saliency based on anisotropic center-surround difference. IEEE Int Conf Image Process, 1115–1119

  17. Ju R, Liu Y, Ren T, Ge L, Wu G (2015) Depth-aware salient object detection using anisotropic center-surround difference. Signal Process: Image Commun 38(10):115–126

    Google Scholar 

  18. Lau CP, Yung CP, Lui LM (2018) Image retargeting via beltrami representation. IEEE Trans Image Process 27(12):5787–5801

    Article  MathSciNet  Google Scholar 

  19. Lei J, Liu J, Zhang H, Gu Z, Ling N, Hou C (2015) Motion and structure information based adaptive weighted depth video estimation. IEEE Trans Broadcast 61(3):416–424

    Article  Google Scholar 

  20. Li X, Lu H, Zhang L, Ruan X, Yang M-H (2013) Saliency detection via dense and sparse reconstruction. ICCV, 2976–2983

  21. Li W, Yang X, Li C, Lu R, Xie X (2020) Fast visual saliency based on multi-scale difference of Gaussians fusion in frequency domain. IET Image Process 14(16):4039–4048

    Article  Google Scholar 

  22. Liu X, Zhang H, Cheung YM, You X, Tang YY (2017) Efficient single image dehazing and denoising: an efficient multi-scale correlated wavelet approach. Comput Vis Image Underst 162:23–33

    Article  Google Scholar 

  23. Liu X, Zhang H, Tang YY, Du JX (2016) Scene-adaptive single image dehazing via opening dark channel model. IET Image Process 10(11):877–884

    Article  Google Scholar 

  24. Liu T et al (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367

    Article  Google Scholar 

  25. Niu Y, Geng Y, Li X, Liu F (2012) Leveraging stereopsis for saliency analysis. IEEE Conf Comput Vis Pattern Recogn, 454–461

  26. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cyber 9(1):62–66

    Article  Google Scholar 

  27. Peng H, Li B, Ji R, Hu W, Xiong W, Lang C (2013) Salient object detection via low-rank and structured sparse matrix decomposition. AAAI Conf Artif Intell 27(1):796–802

    Google Scholar 

  28. Polakovič A, Vargic R, Rozinaj G, Muntean G (2018) An approach to video compression using saliency based foveation, Int Symposium ELMAR Zadar, 169–172

  29. Rahtu E, Kannala J, Salo M, Heikkilä J (2010) Segmenting salient objects from images and videos. European Conf Comput Vis, 366–379

  30. Song H, Liu Z, Du H, Sun G, Le Meur O, Ren T (2017) Depth-aware salient object detection and segmentation via multiscale discriminative saliency fusion and bootstrap learning. IEEE Trans Image Process 26(9):4204–4216

    Article  MathSciNet  Google Scholar 

  31. Tang RD, Yu CR, Qian SH, Yu WY (2015) Saliency detection integrated with depth information. Int Conf Comput Inform Syst and Industrial Application 18:663–665

    Google Scholar 

  32. Wang Y-S, Tai C-L, Sorkine O, Lee T-Y (2008) Optimized scale-and stretch for image resizing. ACM Trans Graphic 27(5):pp

    Article  Google Scholar 

  33. Wang A, Wang M (2017) RGB-D salient object detection via minimum barrier distance transform and saliency fusion. IEEE Signal Process Lett 24 (5):663–667

    Article  Google Scholar 

  34. Yang C, Zhang L, Lu H (2013) Graph-regularized saliency detection with convex-hull-based center prior. IEEE Signal Process Lett 20(7):637–640

    Article  Google Scholar 

  35. Zhai Y, Shah M (2006) Visual attention detection in video sequences using spatiotemporal cues. ACM Multimediag, 815–824

  36. Zhang J, Malmberg F, Sclaroff S (2019) Unconstrained salient object detection, Visual saliency: from pixel-level to object-level analysis. Springer Cham

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghafoor.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest in publishing this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanwal, M., Riaz, M.M., Ali, S.S. et al. Fusing color, depth and histogram maps for saliency detection. Multimed Tools Appl 81, 16243–16253 (2022). https://doi.org/10.1007/s11042-022-12165-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-12165-y

Keywords

Navigation