Skip to main content
Log in

High-capacity PVO-based reversible data hiding scheme using changeable step size

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Reversible data hiding (RDH) algorithm based on pixel-value-ordering (PVO) has received widespread attention because of its excellent performance. PVO algorithm divides the host image into non-overlapped equal-sized blocks, then achieves data embedding by modifying the maximum and minimum values of each block. Every pixel block can be a host of watermark data, so the smaller number of pixel blocks limit the embedding capacity (EC). In our work, a novel PVO with changeable step size (CPVO) is presented which can choose suitable step size based on the number of watermark data bits, even that allow one block to overlap other ones. Take the block size 2 × 2 as an example, we can set step size 2 × 1 or another one in CPVO. Consequently, with a block selection skill based on the noise level (NL) of a pixel block, CPVO can embed more hidden data bits into a host image. Compared to the original PVO-based schemes, experimental results show that our proposed scheme increases the EC by 2 ∼ 3 times, and the marked image quality keeps much higher, even outperforms some other state-of-the-art works in some test images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alattar AM (2004) Reversible watermark using the difference expansion of a generalized integer transform. IEEE Trans Image Process 13(8):1147–1156

    Article  MathSciNet  Google Scholar 

  2. Caldelli R, Filippini F, Becarelli R (2010) Reversible watermarking techniques: an overview and a classification. EURASIP J Inform Secur 2010:134546. https://doi.org/10.1155/2010/134546

    Article  Google Scholar 

  3. Celik MU, Sharma G, Tekalp AM, Saber E (2002) Reversible data hiding. In: International conference on image processing. https://doi.org/10.1109/ICIP.2002.1039911

  4. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-LSB data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  5. Chamlawi R, Khan A (2010) Digital image authentication and recovery: employing integer transform based information embedding and extraction. Inf Sci 180(24):4909–4928

    Article  MathSciNet  Google Scholar 

  6. Chang K (2018) Efficient lossless watermarking algorithm using gradient sorting and selective embedding. Multimed Tools Appl 77(18):23579–23606

    Article  Google Scholar 

  7. Fridrich J, Goljan M, Du R (2002) Lossless data embedding: new paradigm in digital watermarking. EURASIP Journal on Advances in Signal Processing 2002(1):185–196

    MATH  Google Scholar 

  8. He W, Zhou K, Cai J, Wang L, Xiong G (2017) Reversible data hiding using multi-pass pixel value ordering and prediction-error expansion. J Vis Commun Image Represent 49:351–360

    Article  Google Scholar 

  9. Hong W (2010) An efficient prediction-and-shifting embedding technique for high quality reversible data hiding. EURASIP Journal on Advances in Signal Processing 2010(1):104835. https://doi.org/10.1155/2010/104835

    Article  Google Scholar 

  10. Hong W (2012) Adaptive reversible data hiding method based on error energy control and histogram shifting. Opt Commun 285(2):101–108

    Article  Google Scholar 

  11. Hu Y, Lee H, Li J (2009) DE-based reversible data hiding with improved overflow location map. IEEE Trans Circ Sys Video Technol 19(2):250–260

    Article  Google Scholar 

  12. Jung KH (2018) Authenticable reversible data hiding scheme with less distortion in dual stego-images. Multime Tools Appl 77(5):6225–6241

    Article  Google Scholar 

  13. Kamstra L, Heijmans HJ (2005) Reversible data embedding into images using wavelet techniques and sorting. IEEE Trans Image Process 14 (12):2082–2090

    Article  MathSciNet  Google Scholar 

  14. Khosravi MR, Samadi S (2019) Reliable data aggregation in internet of ViSAR vehicles using chained dual-phase adaptive interpolation and data embedding. IEEE Internet Things J 7(4):2603–2610

    Article  Google Scholar 

  15. Khosravi MR, Yazdi M (2018) A lossless data hiding scheme for medical images using a hybrid solution based on ibrw error histogram computation and quartered interpolation with greedy weights. Neural Comput & Applic 30(7):2017–2028

    Article  Google Scholar 

  16. Kim C, Shin D, Leng L, Yang C (2018) Lossless data hiding for absolute moment block truncation coding using histogram modification. Journal of Real-time Image Processing 14(1):101–114

    Article  Google Scholar 

  17. Kim C, Shin D, Leng L, Yang CN (2018) Separable reversible data hiding in encrypted halftone image. Displays 55:71–79. https://doi.org/10.1016/j.displa.2018.04.002

    Article  Google Scholar 

  18. Kumar R, Jung KH (2020) Enhanced pairwise ipvo-based reversible data hiding scheme using rhombus context. Information Sciences. https://doi.org/10.1016/j.ins.2020.05.047

  19. Lee S-K, Suh Y-H, Ho Y-S (2006) Reversiblee image authentication based on watermarking. In: IEEE international conference on multimedia and expo, ICME 2006 - Proceedings, pp 1321–1324

  20. Leng L, Li M, Kim C, Bi X (2017) Dual-source discrimination power analysis for multi-instance contactless palmprint recognition. Multimed Tools Appl 76(1):333–354

    Article  Google Scholar 

  21. Leng L, Li M, Teoh ABJ (2013) Conjugate 2DPalmHash code for secure palm-print-vein verification. International Congress on Image & Signal Processing. IEEE. https://doi.org/10.1109/CISP.2013.6743951

  22. Leng L, Zhang J, Xu J, Khan MK, Alghathbar K (2010) Dynamic weighted discrimination power analysis: a novel approach for face and palmprint recognition in DCT domain. International Conference on Information & Communication Technology Convergence 5(17):2543–2554

    Google Scholar 

  23. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93(1):198–205

    Article  Google Scholar 

  24. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20(12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  25. Ni Z, Shi Y, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circ Sys Video Technol 16(3):354–362

    Article  Google Scholar 

  26. Ou B, Li X, Zhao Y, Ni R (2014) Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Processing-image Communication 29(7):760–772

    Article  Google Scholar 

  27. Pan Z, Gao X, Wang L, Gao E (2020) Effective reversible data hiding using dynamic neighboring pixels prediction based on prediction-error histogram. Multimed Tools Appl 2020(2):1–27

    Google Scholar 

  28. Peng F, Li X, Yang B (2014) Improved PVO-based reversible data hiding. Digital Signal Processing 25:255–265

    Article  Google Scholar 

  29. Qu X, Kim HJ (2015) Pixel-based pixel value ordering predictor for high-fidelity reversible data hiding. Signal Process 111:249–260

    Article  Google Scholar 

  30. Sachnev V, Kim HJ, Nam J, Suresh S, Shi YQ (2009) Reversible watermarking algorithm using sorting and prediction. IEEE Trans Circ Sys Video Technol 19(7):989–999

    Article  Google Scholar 

  31. Tai W, Yeh C, Chang C (2009) Reversible data hiding based on histogram modification of pixel differences. IEEE Trans Circ Sys Video Technol 19 (6):906–910

    Article  Google Scholar 

  32. Thodi DM, Rodriguez JJ (2004) Reversible watermarking by prediction-error expansion. 6th IEEE Southwest Symposium on Image Analysis and Interpretation. https://doi.org/10.1109/IAI.2004.1300937

  33. Thodi DM, Rodriguez JJ (2007) Expansion embedding techniques for reversible watermarking. IEEE Trans Image Process 16(3):721–730

    Article  MathSciNet  Google Scholar 

  34. Tian J (2002) Reversible watermarking by difference expansion. In: Proc. workshop on multimedia and security, Tualatin, pp 19–22

  35. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circ Sys Video Technol 13(8):890–896

    Article  Google Scholar 

  36. Wang X, Ding J, Pei Q (2015) A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block partition. Inf Sci 310:16–35

    Article  Google Scholar 

  37. Wong PW, Memon N (2001) Secret and public key image watermarking schemes for image authentication and ownership verification. IEEE Trans Image Process 10(10):1593–1601

    Article  MATH  Google Scholar 

  38. Yin M (2017) Multimedia authentication for copyright protection. Iop Conference 69:012160. https://doi.org/10.1088/1755-1315/69/1/012160

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihong Bi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Ding, Y. & Bi, W. High-capacity PVO-based reversible data hiding scheme using changeable step size. Multimed Tools Appl 80, 1123–1141 (2021). https://doi.org/10.1007/s11042-020-09374-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09374-8

Keywords

Navigation