Skip to main content

Advertisement

Log in

Computerized retinal image analysis - a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The speedy development of digital imaging and computer vision has extended the potential of using these technologies in ophthalmology. Image processing systems are increasingly prominent in medical diagnostic systems and especially to modern ophthalmology. The retinal images give information about the health of the visual system. Retinal diseases, such as glaucoma, diabetic retinopathy, age-related macular degeneration, and many other diseases that can lead to blindness, manifest themselves in the retina. An automated system offers standardized large-scale screening at a lower cost, reduces human errors, and provides services to remote areas. Extensive research has been done since the last two decades in developing automated methods. Due to the fast evolution of new techniques, a comprehensive review is needed on such technique and algorithms present to date. This survey paper provides the reader a comprehensive review of the existing research in automated retinal image analysis. In this paper, automated computer aided methods used to diagnose retinal diseases have been reviewed. Several state-of-the art techniques and algorithms used to localize and segment features, such as optic disc and optic cup, macula and fovea, retinal blood vessels, detection of retinal lesions (microaneurysms, haemorrhages, exudates), are discussed and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abdelazeem S (2002) Micro-aneurysm detection using vessels removal and circular hough transform. In: Proceedings of the nineteenth national radio science conference. IEEE, Piscataway, pp 421–426

  2. Abramoff MD, Niemeijer M (2006) The automatic detection of the optic disc location in retinal images using optic disc location regression. In: Engineering in medicine and biology society, 2006. EMBS’06. 28th annual international conference of the IEEE. IEEE, Piscataway, pp 4432–4435

  3. Abramoff MD, Garvin MK, Sonka M (2010) Retinal imaging and image analysis. IEEE Rev Biomed Eng 3:169–208

    Google Scholar 

  4. Acharya UR, Chua CK, Ng E, Yu W, Chee C (2008) Application of higher order spectra for the identification of diabetes retinopathy stages. J Med Syst 32(6):481–488

    Google Scholar 

  5. Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. P I Mech Eng H 223(5):545–553

    Google Scholar 

  6. Acharya UR, Ng EYK, Tan JH, Sree SV, Ng KH (2012) An integrated index for the identification of diabetic retinopathy stages using texture parameters. J Med Sys 36(3):2011–2020

    Google Scholar 

  7. Adams R, Bischof L (1994) Seeded region growing. IEEE Trans Pattern Anal Mach Intell 16(6):641–647

    Google Scholar 

  8. Akram F, Singh VK, Rashwan HA, Abdel-Nasser M, Sarker M, Kamal M, Pandey N, Puig D (2019) Adversarial learning with multiscale features and kernel factorization for retinal blood vessel segmentation. arXiv:190702742

  9. Al-Diri B, Hunter A, Steel D, Habib M, Hudaib T, Berry S (2008) A reference data set for retinal vessel profiles. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. IEEE, Piscataway, pp 2262–2265

  10. Allen L (1964) Ocular fundus photography: suggestions for achieving consistently good pictures and instructions for stereoscopic photography. American J Ophthalmol 57(1):13–28

    Google Scholar 

  11. Andreini P, Bonechi S, Bianchini M, Mecocci A, Scarselli F, Sodi A (2019) A two stage gan for high resolution retinal image generation and segmentation. arXiv:190712296

  12. Antal B, Hajdu A (2013) Improving microaneurysm detection in color fundus images by using context-aware approaches. Comput Med Imaging Graph 37 (5-6):403–408

    Google Scholar 

  13. Antal B, Hajdu A, et al. (2012) An ensemble-based system for microaneurysm detection and diabetic retinopathy grading. IEEE Trans Biomed Eng 59(6):1720

    Google Scholar 

  14. Ardeshir G (2005) 2D and 3D image registration for medical, remote sensing and industrial applications. John Wiley and Sons, New York

    Google Scholar 

  15. Azzopardi G, Strisciuglio N, Vento M, Petkov N (2015) Trainable cosfire filters for vessel delineation with application to retinal images. Med Image Anal 19 (1):46–57

    Google Scholar 

  16. Bernardes R, Serranho P, Lobo C (2011) Digital ocular fundus imaging: a review. Ophthalmologica 226(4):161–181

    Google Scholar 

  17. Boyd K, McKinney JK (2018) What is glaucoma?. https://www.aao.org/eye-health/diseases/what-is-glaucoma

  18. Canny J (1986) A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence (6), pp. 679–698

  19. Carmona EJ, Rincón M, García-Feijoó J, Martínez-de-la Casa JM (2008) Identification of the optic nerve head with genetic algorithms. Artif Intell Med 43(3):243–259

    Google Scholar 

  20. Chaudhuri S, Chatterjee S, Katz N, Nelson M, Goldbaum M (1989) Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans Med Imaging 8(3):263–269

    Google Scholar 

  21. Cheng J, Liu J, Xu Y, Yin F, Wong DWK, Tan NM, Tao D, Cheng CY, Aung T, Wong TY (2013) Superpixel classification based optic disc and optic cup segmentation for glaucoma screening. IEEE Trans Med Imaging 32 (6):1019–1032

    Google Scholar 

  22. Chin KS, Trucco E, Tan L, Wilson PJ (2013) Automatic fovea location in retinal images using anatomical priors and vessel density. Pattern Recogn Lett 34 (10):1152–1158

    Google Scholar 

  23. Christodoulidis A, Hurtut T, Tahar HB, Cheriet F (2016) A multi-scale tensor voting approach for small retinal vessel segmentation in high resolution fundus images. Comput Med Imaging Graph 52:28–43

    Google Scholar 

  24. Chutatape O, Zheng L, Krishnan SM (1998) Retinal blood vessel detection and tracking by matched gaussian and kalman filters. In: Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, vol 6. IEEE, Piscataway, pp 3144–3149

  25. Dai P, Luo H, Sheng H, Zhao Y, Li L, Wu J, Zhao Y, Suzuki K (2015) A new approach to segment both main and peripheral retinal vessels based on gray-voting and gaussian mixture model. PloS one 10(6):e0127,748

    Google Scholar 

  26. De J, Cheng L, Zhang X, Lin F, Li H, Ong KH, Yu W, Yu Y, Ahmed S (2016) A graph-theoretical approach for tracing filamentary structures in neuronal and retinal images. IEEE Trans Med Imaging 35(1):257–272

    Google Scholar 

  27. Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Gain P, Ordonez R, Massin P, Erginay A, et al. (2014) Feedback on a publicly distributed image database: the messidor database. Image Anal Stereol 33 (3):231–234

    MATH  Google Scholar 

  28. Deepa V, Kumar CS, Andrews SS (2019) Automated detection of microaneurysms using stockwell transform and statistical features. IET Image Process 13(8):1341–1348

    Google Scholar 

  29. Flick C (1947) Centenary of babbage’s ophthalmoscope. The Optician 113 (2925):246–246

    Google Scholar 

  30. Foracchia M, Grisan E, Ruggeri A (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 23(10):1189–1195

    Google Scholar 

  31. Frangi AF, Niessen WJ, Vincken KL, Viergever MA (1998) Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, pp 130–137

  32. Fraser CE, D’Amico DJ, Nathan D, Trobe J, Mulder J (2017) Diabetic retinopathy: classification and clinical features. uptodate. UpToDate, Waltham, MA(Accessed on February 24, 2016)

  33. Fraz MM, Barman SA, Remagnino P, Hoppe A, Basit A, Uyyanonvara B, Rudnicka AR, Owen CG (2012a) An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput Meth Prog Bio 108(2):600–616

    Google Scholar 

  34. Fraz MM, Remagnino P, Hoppe A, Uyyanonvara B, Rudnicka AR, Owen CG, Barman SA (2012b) An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans Biomed Eng 59(9):2538–2548

    Google Scholar 

  35. Fraz MM, Basit A, Barman S (2013) Application of morphological bit planes in retinal blood vessel extraction. J Digit Imaging 26(2):274–286

    Google Scholar 

  36. Frucci M, Riccio D, di Baja GS, Serino L (2014) Using contrast and directional information for retinal vessels segmentation. In: Signal-image technology and internet-based systems (SITIS), 2014 Tenth International Conference on, IEEE, pp. 592–597

  37. García M, Sánchez CI, López MI, Abásolo D, Hornero R (2009) Neural network based detection of hard exudates in retinal images. Comput Meth Prog Bio 93(1):9–19

    Google Scholar 

  38. Gardner G, Keating D, Williamson TH, Elliott AT (1996) Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. British J Ophthalmol 80(11):940–944

    Google Scholar 

  39. Gerloff O (1891) Uber die photographie des augenhintergrundes. Klin Monatsblä,tter Augenheilkunde 29:397–403

    Google Scholar 

  40. Gongt H, Li Y, Liu G, Wu W, Chen G (2015) A level set method for retina image vessel segmentation based on the local cluster value via bias correction. In: Image and Signal Processing (CISP), 2015 8th International Congress on, IEEE, pp 413–417

  41. Gonzalez RC, Woods RE, et al. (2002) Digital image processing

  42. Gramatikov BI (2014) Modern technologies for retinal scanning and imaging: an introduction for the biomedical engineer. Biomed Eng Online 13(1):52

    Google Scholar 

  43. Gullstrand A (1910) Neue methoden der reflexlosen ophthalmoskopie. Berichte Deutsche Ophthalmologische Gesellschaft 36(8):326

    Google Scholar 

  44. Habib M, Welikala R, Hoppe A, Owen C, Rudnicka A, Barman S (2017) Detection of microaneurysms in retinal images using an ensemble classifier. Inform Med. Unlocked 9:44–57

    Google Scholar 

  45. Haddrill M, Slonim C (2018) What is age-related macular degeneration. https://www.allaboutvision.com/conditions/amd.htm

  46. Hajdu A, Hajdu L, Jonas A, Kovacs L, Toman H (2013) Generalizing the majority voting scheme to spatially constrained voting. IEEE Trans Image Processing 22(11):4182–4194

    MathSciNet  MATH  Google Scholar 

  47. Han J, Pei J, Kamber M (2011) Data mining: concepts and techniques. Elsevier, Amsterdam

    MATH  Google Scholar 

  48. Harangi B, Antal B, Hajdu A (2012a) Automatic exudate detection with improved naïve-bayes classifier. In: Computer-based medical systems (CBMS), 2012 25th international symposium on, IEEE, pp 1–4

  49. Harangi B, Lazar I, Hajdu A (2012b) Automatic exudate detection using active contour model and regionwise classification. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. IEEE, Piscataway, pp 5951–5954

  50. Hatanaka Y, Inoue T, Okumura S, Muramatsu C, Fujita H (2012) Automated microaneurysm detection method based on double-ring filter and feature analysis in retinal fundus images. In: Computer-based medical systems (CBMS), 2012 25th international symposium on, IEEE, pp 1–4

  51. Helmholtz Hv (1851) Beschreibung des augenspiegels. In: Beschreibung Eines Augen-Spiegels. Springer, Berlin, pp 28–34

  52. Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22(8):951–958

    Google Scholar 

  53. Hoover A, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Google Scholar 

  54. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, et al. (1991) Optical coherence tomography. Science 254(5035):1178–1181

    Google Scholar 

  55. Institute NNE (2015). https://nei.nih.gov/

  56. Jiang Z, Yepez J, An S, Ko S (2017) Fast, accurate and robust retinal vessel segmentation system. Biocybern Biomed Eng 37(3):412–421

    Google Scholar 

  57. Jin Z, Zhaohui T, Weihua G, Jinping L (2015) Retinal vessel image segmentation based on correlational open active contours model. In: Proceedings of the 2015 Chinese automation congress (CAC), Wuhan, China, pp 27–29

  58. Jothi JAA, Rajam VMA (2017) A survey on automated cancer diagnosis from histopathology images. Artif Intell Rev 48(1):31–81

    Google Scholar 

  59. Kalviainen H, Hirvonen P, Xu L, Oja E (1995) Probabilistic and non-probabilistic hough transforms: overview and comparisons. Image Vision Comput 13(4):239–252

    Google Scholar 

  60. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    MATH  Google Scholar 

  61. Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Voutilainen R, Uusitalo H, Kälviäinen H, Pietilä J (2007) Diaretdb1 diabetic retinopathy database and evaluation protocol. vol 2007. https://doi.org/10.5244/C.21.15

  62. Keeler CR (1997) 150 years since babbage’s ophthalmoscope. Arch ophthalmol 115(11):1456–1457

    Google Scholar 

  63. Khaderi KR, Ahmed KA, Berry JL, Labriola LT, Cornwell R (2011) Retinal imaging modalities: advantages and limitations for clinical practice. Retin Physician 8(3):44–46

    Google Scholar 

  64. Khomri B, Christodoulidis A, Djerou L, Babahenini MC, Cheriet F (2018) Retinal blood vessel segmentation using the elite-guided multi-objective artificial bee colony algorithm. IET Image Process 12(12):2163–2171

    Google Scholar 

  65. Köhler T, Budai A, Kraus MF, Odstrčilik J, Michelson G, Hornegger J (2013) Automatic no-reference quality assessment for retinal fundus images using vessel segmentation. In: Computer-based medical systems (CBMS), 2013 IEEE 26th international symposium on, IEEE, pp. 95–100

  66. Kolb H (2012) Simple anatomy of the retina. http://webvision.med.utah.edu/book/part-i-foundations/simple-anatomy-of-the-retina/

  67. L Srinidhi C, Aparna P, Rajan J (2017) Recent advancements in retinal vessel segmentation. Journal of Medical Systems 41(4):70. https://doi.org/10.1007/s10916-017-0719-2

    Article  Google Scholar 

  68. Lay B, Baudoin C, Klein JC (1984) Automatic detection of microaneurysms in retinopathy fluoro-angiogram. In: Applications of digital image processing VI, International society for optics and photonics, vol 432, pp 165–174

  69. Lazar I, Hajdu A (2013) Retinal microaneurysm detection through local rotating cross-section profile analysis. IEEE Trans Med Imaging 32(2):400–407

    Google Scholar 

  70. Li H, Chutatape O (2004) Automated feature extraction in color retinal images by a model based approach. IEEE Trans Biomed Eng 51(2):246–254

    Google Scholar 

  71. Lindeberg T (1994) Scale-space theory: a basic tool for analyzing structures at different scales. J Appl Stat 21(1-2):225–270

    Google Scholar 

  72. Liskowski P, Krawiec K (2016) Segmenting retinal blood vessels with deep neural networks. IEEE Trans Med Imaging 35(11):2369–2380

    Google Scholar 

  73. Liu D, Yu J (2009) Otsu method and k-means. In: Hybrid intelligent systems, 2009. HIS’09. Ninth international conference on, IEEE, vol. 1, pp. 344–349

  74. Lowell J, Hunter A, Steel D, Basu A, Ryder R, Fletcher E, Kennedy L, et al. (2004) Optic nerve head segmentation. IEEE Trans Med Imaging 23 (2):256–264

    Google Scholar 

  75. Lu S (2011) Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans Med Imaging 30(12):2126–2133

    Google Scholar 

  76. Lupascu CA, Tegolo D, Trucco E (2010) Fabc: retinal vessel segmentation using adaboost. IEEE Trans Inf Technol Biomed 14(5):1267–1274

    Google Scholar 

  77. Maintz JA, Viergever MA (1998) A survey of medical image registration. Med Image Anal 2(1):1–36

    Google Scholar 

  78. Maji D, Santara A, Ghosh S, Sheet D, Mitra P (2015) Deep neural network and random forest hybrid architecture for learning to detect retinal vessels in fundus images. In: Engineering in medicine and biology society (EMBC), 2015 37th annual international conference of the IEEE. IEEE, Piscataway, pp 3029–3032

  79. Maji D, Santara A, Mitra P, Sheet D (2016) Ensemble of deep convolutional neural networks for learning to detect retinal vessels in fundus images. arXiv:160304833

  80. Maninis KK, Pont-Tuset J, Arbeláez P, Van Gool L (2016) Deep retinal image understanding. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 140–148

  81. Matsopoulos GK, Mouravliansky NA, Delibasis KK, Nikita KS (1999) Automatic retinal image registration scheme using global optimization techniques. IEEE Trans Inf Technol Biomed 3(1):47–60

    Google Scholar 

  82. Mizutani A, Muramatsu C, Hatanaka Y, Suemori S, Hara T, Fujita H (2009) Automated microaneurysm detection method based on double ring filter in retinal fundus images. In: Medical Imaging 2009: Computer-Aided Diagnosis, International Society for Optics and Photonics, vol. 7260, p. 72601N

  83. Moghimirad E, Rezatofighi SH, Soltanian-Zadeh H (2012) Retinal vessel segmentation using a multi-scale medialness function. Comput Biol Med 42(1):50–60

    Google Scholar 

  84. Nekovei R, Sun Y (1995) Back-propagation network and its configuration for blood vessel detection in angiograms. IEEE Trans Neural Networ 6(1):64–72

    Google Scholar 

  85. Neto LC, Ramalho GL, Neto JFR, Veras RM, Medeiros FN (2017) An unsupervised coarse-to-fine algorithm for blood vessel segmentation in fundus images. Expert Syst Appl 78:182–192

    Google Scholar 

  86. Nguyen UT, Bhuiyan A, Park LA, Ramamohanarao K (2013) An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern Recognit 46(3):703–715

    Google Scholar 

  87. Niemeijer M, Van Ginneken B, Staal J, Suttorp-Schulten MS, Abràmoff MD (2005) Automatic detection of red lesions in digital color fundus photographs. IEEE Trans Med Imaging 24(5):584–592

    Google Scholar 

  88. Niemeijer M, Abramoff MD, Van Ginneken B (2007a) Segmentation of the optic disc, macula and vascular arch in fundus photographs. IEEE Trans Med Imaging 26(1):116–127

    Google Scholar 

  89. Niemeijer M, van Ginneken B, Russell SR, Suttorp-Schulten MS, Abramoff MD (2007b) Automated detection and differentiation of drusen, exudates, and cotton-wool spots in digital color fundus photographs for diabetic retinopathy diagnosis. Investig Ophthalmol Vis Sci 48(5):2260–2267

    Google Scholar 

  90. Niemeijer M, Abràmoff M D, Van Ginneken B (2009) Fast detection of the optic disc and fovea in color fundus photographs. Med Image Anal 13(6):859–870

    Google Scholar 

  91. Novotny HR, Alvis DL (1961) A method of photographing fluorescence in circulating blood in the human retina. Circulation 24(1):82–86

    Google Scholar 

  92. Oliveira A, Pereira S, Silva CA (2018) Retinal vessel segmentation based on fully convolutional neural networks. Expert Syst Appl 112:229–242

    Google Scholar 

  93. Orlando JI, Prokofyeva E, Blaschko MB (2017) A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans Biomed Eng 64(1):16–27

    Google Scholar 

  94. Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid). IEEE Dataport

  95. Rammy SA, Anwar SJ, Abrar M, Zhang W (2019) Conditional patch-based generative adversarial network for retinal vessel segmentation. In: 2019 22nd international multitopic conference (INMIC). IEEE, Piscataway, pp 1–6

  96. Roerdink JB, Meijster A (2000) The watershed transform: definitions, algorithms and parallelization strategies. Fundam Inform 41(1, 2):187–228

    MathSciNet  MATH  Google Scholar 

  97. Sathananthavathi V, Indumathi G (2018) Bat algorithm inspired retinal blood vessel segmentation. IET Image Process 12(11):2075–2083

    Google Scholar 

  98. Schmitt JM (1999) Optical coherence tomography (oct): a review. IEEE J Sel Top Quant 5(4):1205–1215

    Google Scholar 

  99. Sekhar S, Al-Nuaimy W, Nandi AK (2008) Automated localisation of retinal optic disk using hough transform. In: Biomedical imaging: from Nano to Macro, 2008. ISBI 2008. 5th IEEE international symposium on, IEEE, pp 1577–1580

  100. Serra J (1982) Image analysis and mathematical morphology. Academic Press Cambridge, USA

    MATH  Google Scholar 

  101. Sezgin M, Sankur B (2004) Survey over image thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–166

    Google Scholar 

  102. Shah SAA, Shahzad A, Khan MA, Lu CK, Tang TB (2019) Unsupervised method for retinal vessel segmentation based on gabor wavelet and multiscale line detector, vol 7. IEEE Access, Piscataway, pp 167,221–167,228

    Google Scholar 

  103. Sharma S, Wasson EV (2015) Retinal blood vessel segmentation using fuzzy logic. Journal of Network Communications and Emerging Technologies vol. 4(3)

  104. Sigurdhsson EM, Valero S, Benediktsson JA, Chanussot J, Talbot H, Stefansson E (2014) Automatic retinal vessel extraction based on directional mathematical morphology and fuzzy classification. Pattern Recogn Lett 47:164–171

    Google Scholar 

  105. Singh NP, Srivastava R (2016) Retinal blood vessels segmentation by using gumbel probability distribution function based matched filter. Comput Meth Prog Bio 129:40–50

    Google Scholar 

  106. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83(8):902–910

    Google Scholar 

  107. Sinthanayothin C, Boyce JF, Williamson TH, Cook HL, Mensah E, Lal S, Usher D (2002) Automated detection of diabetic retinopathy on digital fundus images. Diabet Med 19(2):105–112

    Google Scholar 

  108. Smistad E, Falch TL, Bozorgi M, Elster AC, Lindseth F (2015) Medical image segmentation on gpus–a comprehensive review. Medical image analysis 20(1):1–18

    Google Scholar 

  109. Sopharak A, Uyyanonvara B, Barman S, Williamson TH (2008) Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods. Comput Med Imaging Graph 32(8):720–727

    Google Scholar 

  110. Sopharak A, Uyyanonvara B, Barman S (2009) Automatic exudate detection from non-dilated diabetic retinopathy retinal images using fuzzy c-means clustering. Sensors 9(3):2148–2161

    Google Scholar 

  111. Sopharak A, Dailey MN, Uyyanonvara B, Barman S, Williamson T, Nwe KT, Moe YA (2010) Machine learning approach to automatic exudate detection in retinal images from diabetic patients. J Mod Opt. 57(2):124–135

    MATH  Google Scholar 

  112. Spencer T, Olson JA, McHardy KC, Sharp PF, Forrester JV (1996) An image-processing strategy for the segmentation and quantification of microaneurysms in fluorescein angiograms of the ocular fundus. Comput Biomed Res 29(4):284–302

    Google Scholar 

  113. Sridhar S (2011) Digital image processing. Oxford University Press, London

    Google Scholar 

  114. Staal J, Abramoff M, Niemeijer M, Viergever M, van Ginneken B (2004) Ridge based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Google Scholar 

  115. Usher D, Dumskyj M, Himaga M, Williamson TH, Nussey S, Boyce J (2004) Automated detection of diabetic retinopathy in digital retinal images: a tool for diabetic retinopathy screening. Diabet Med 21(1):84–90

    Google Scholar 

  116. Walter T, Klein JC, Massin P, Erginay A (2002) A contribution of image processing to the diagnosis of diabetic retinopathy-detection of exudates in color fundus images of the human retina. IEEE Trans Med Imaging 21(10):1236–1243

    Google Scholar 

  117. Walter T, Massin P, Erginay A, Ordonez R, Jeulin C, Klein JC (2007) Automatic detection of microaneurysms in color fundus images. Med Image Anal 11 (6):555–566

    Google Scholar 

  118. Wang S, Yin Y, Cao G, Wei B, Zheng Y, Yang G (2015) Hierarchical retinal blood vessel segmentation based on feature and ensemble learning. Neurocomputing 149:708–717

    Google Scholar 

  119. Wang Y, Ji G, Lin P, Trucco E (2013) Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn 46 (8):2117–2133

    Google Scholar 

  120. WebMD (2018) Diabetic retinopathy. https://www.webmd.com/diabetes/diabetic-retinopathy#1

  121. Welfer D, Scharcanski J, Marinho DR (2011) Fovea center detection based on the retina anatomy and mathematical morphology. Comput Meth Prog Bio 104 (3):397–409

    Google Scholar 

  122. WHO (2010) Global data on visual impairment. http://www.who.int/blindness/publications/globaldata/en/

  123. Wisaeng K, Sa-Ngiamvibool W (2019) Exudates detection using morphology mean shift algorithm in retinal images. IEEE Access 7:11,946–11,958

    Google Scholar 

  124. Wu CH, Agam G, Stanchev P (2007) A hybrid filtering approach to retinal vessel segmentation. In: Biomedical imaging: from nano to macro, 2007. ISBI 2007. 4th IEEE international symposium on, IEEE, pp. 604–607

  125. Xiao Z, Adel M, Bourennane S (2013) Bayesian method with spatial constraint for retinal vessel segmentation. Computational and mathematical methods in medicine

  126. Xie S, Nie H (2013) Retinal vascular image segmentation using genetic algorithm plus fcm clustering. In: 2013 Third international conference on intelligent system design and engineering applications. IEEE, Piscataway, pp 1225–1228

  127. Yedidya T, Hartley R (2008) Tracking of blood vessels in retinal images using kalman filter. In: Digital image computing: techniques and applications. IEEE, Piscataway, pp 52–58

  128. Yin Y, Adel M, Bourennane S (2012) Retinal vessel segmentation using a probabilistic tracking method. Pattern Recogn 45(4):1235–1244

    MATH  Google Scholar 

  129. You X, Peng Q, Yuan Y, Ym Cheung, Lei J (2011) Segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn 44(10-11):2314–2324

    Google Scholar 

  130. Yu H, Barriga S, Agurto C, Zamora G, Bauman W, Soliz P (2012) Fast vessel segmentation in retinal images using multi-scale enhancement and second-order local entropy. In: Medical imaging 2012: computer-aided diagnosis, vol 8315. International Society for Optics and Photonics, Bellingham, p 83151B

  131. Zhang J, Li H, Nie Q, Cheng L (2014) A retinal vessel boundary tracking method based on bayesian theory and multi-scale line detection. Comput Med Imaging Graph 38(6):517–525

    Google Scholar 

  132. Zhang J, Dashtbozorg B, Bekkers E, Pluim JP, Duits R, ter Haar Romeny BM (2016) Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans Med Imaging 35(12):2631–2644

    Google Scholar 

  133. Zhang S, Fu H, Yan Y, Zhang Y, Wu Q, Yang M, Tan M, Xu Y (2019) Attention guided network for retinal image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, Berlin, pp 797–805

  134. Zhao Y, Liu Y, Wu X, Harding SP, Zheng Y (2015a) Retinal vessel segmentation: An efficient graph cut approach with retinex and local phase. PloS one 10(4):e0122,332

    Google Scholar 

  135. Zhao Y, Rada L, Chen K, Harding SP, Zheng Y, et al. (2015b) Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans Med Imaging 34 (9):1797–1807

    Google Scholar 

  136. Zhao YQ, Wang XH, Wang XF, Shih FY (2014) Retinal vessels segmentation based on level set and region growing. Pattern Recogn 47(7):2437–2446

    Google Scholar 

  137. Zhu C, Zou B, Zhao R, Cui J, Duan X, Chen Z, Liang Y (2017) Retinal vessel segmentation in colour fundus images using extreme learning machine. Comput Med Imaging Graph 55:68–77

    Google Scholar 

  138. Zolfagharnasab H, Naghsh-Nilchi AR (2014) Cauchy based matched filter for retinal vessels detection. J Medical Signals Sens 4(1):1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanupriya Mittal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, K., Rajam, V.M.A. Computerized retinal image analysis - a survey. Multimed Tools Appl 79, 22389–22421 (2020). https://doi.org/10.1007/s11042-020-09041-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-09041-y

Keywords

Navigation