Skip to main content
Log in

DLGBD: A directional local gradient based descriptor for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel high-performance gradient-based local descriptor that handles the prominent challenges of face recognition such as resistance against rotational, illuminative changes as well as noise effects. One of the novelties this study poses is that, while processing the gradient for each direction, an analysis is done by considering the predecessors of the corresponding pixel as well as the successors at that direction. Furthermore, earlier studies represent these local relationships by encoding them in binary because they consider only the positive and negative intensity changes. However, we propose an alternative way of representation that encodes the relationships between each pixel and its neighbors in a multi-valued logic manner called Directional Local Gradient Based Descriptor (DLGBD). Our method not only considers the variations but also uniformity. A threshold value is defined to identify whether an intensity variation is present in the specified direction. If the intensity change exceeds the threshold value, then it is evaluated as a variation either in positively or negatively depending on the direction of the change. Three states of the relationship between multiple pixels at each direction yield a more discriminative descriptor for face retrieval. Ternary logic is applied to express three states. Ternary values that are calculated at each direction are concatenated and the resulting compound ternary value is replaced with the reference pixel. By this way, a more discriminative face descriptor is achieved which is resistant to noise and challenges in unconstrained environments. Extensive simulations are conducted over benchmark datasets and the performance of DLGBD is compared to the other state-of-the-art methods. As presented by the simulation results, the DLGBD achieves very high discriminating performance as well as providing resistance against rotation and illumination variations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. In: Proceedings of the 8th European Conference on Computer Vision, pp. 469–481

  2. Ahonen T, Hadid A, Pietikainen M (2006) Face recognition with local binary patterns: Application to Face Recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  3. Bo Y, Chen S A Comparative Study on Local Binary Pattern (LBP) based face recognition: LBP Histogram versus LBP Image. Neurocomputing 120:365–379

  4. Chakraborty S (2017) Satish Kumar Singh, Pa-van Chakraborty, “Local Directional Gradient Pat-tern: a Local Descriptor for Face Recognition”. Multimedia Tools and Applications 76:1201–1216

    Article  Google Scholar 

  5. Chakraborty S, Singh SK, Chakraborty P-v (2016) Local Gradient Hexa Pattern: A Descriptor for Face Recognition and Retrieval. IEEE Transactions on Circuits and Systems for Video Technology PP(99):1–1

    Google Scholar 

  6. Chen X, Zhang JS (2010) Maximum variance difference based embedding approach for facial feature extraction. Int J Pattern Recognit Artif Intell 24(7):1–14

    Article  Google Scholar 

  7. Dahmane M, Meunier J (2011) Emotion recognition using dynamic gridbased HoG features. In: IEEE Int. Conf. Autom. Face Gesture Recognit. Workshops (FG), pp. 884–888

  8. Dan Z, Chen Y, Yang Z, Wu G (2014) An Improved Local Binary Pattern for Texture Classification. Optik 125:6320–6324

    Article  Google Scholar 

  9. Doshi N, Schaefer G (2012) A comprehensive benchmark of local binary pattern algorithms for texture retrieval. Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 2760–2763

  10. Dubey SR (2017) Local directional relation pattern for unconstrained and robust face retrieval. arXiv:1709.09518 [cs.CV]

  11. Etemad K, Chellappa R (1997) Discriminant Analysis for recognition of human face images. J Opt Soc Am A 14(8):1724–1733

    Article  Google Scholar 

  12. Fan KC, Hung TY (2014) A novel local patterndescriptor-local vector pattern in high-order derivative space for face recognition. IEEE Trans Image Process 23(7):2877–2891

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernández A, Álvarez M, Bianconi F (2013) Texture description through histograms of equivalent patterns. J Math Imaging Vis 45(1):76–102

    Article  MathSciNet  MATH  Google Scholar 

  14. Guan Z, Wang C, Chen Z, Bu J, Chen C (2010) Efficient Face Recognition Using Tensor Subspace Regression. Neurocomputing 73:2744–2753

    Article  Google Scholar 

  15. Haralick RM (1979) Statistical and structural approach to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  16. Haralick RM, Shanmugan K, Dinstein I (1973) Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics 3:610–621

    Article  Google Scholar 

  17. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436

    Article  MATH  Google Scholar 

  18. Huang D, Shan C, Ardabilian M, Wang Y, Chen L (2011) Local binary patterns and its application to facial image analysis: a survey. IEEE Trans Syst Man Cybern—Part C: Appl Rev 41(6):765–781

    Article  Google Scholar 

  19. Jabid T, Kabir MH, Chae O (2010) Robust facial expression recognition based on local directional pattern. ETRI J 32(5):784–794

    Article  Google Scholar 

  20. Jafari-Khouzani K, Soltanian-Zadeh H (2005) Radon transform orientation estimation for rotation invariant texture analysis. IEEE Trans Pattern Anal Mach Intell 27(6):1004–1008

    Article  Google Scholar 

  21. Jafri R, Arabnia HR (2009) A Survey of Face Recognition Techniques. Journal of Information Processing Systems 5(2):41–68

    Article  Google Scholar 

  22. Jain A, Hong L, Pankanti S (2000) Biometric Identification. Commun ACM 43(2):91–98. https://doi.org/10.1145/328236.328110

    Article  Google Scholar 

  23. Jain AK, Ross A (2008) Introduction to biometrics. In: Jain AK; Flynn, Ross A. (eds) Handbook of Biometrics. Springer, pp. 1–22. ISBN 978–0–387-71040-2

  24. Kellokumpu V, Zhao G, Pietikäinen M (2008) Human activity recognition using a dynamic texture based method. Proceedings of the British Machine Vision Conference

  25. Kirby M, Sirovich L (1990) Applications of the Karhunen–Loeve procedure for the characterisation of human faces. IEEE Trans Pattern Anal Mach Intell 12:103–108

    Article  Google Scholar 

  26. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  27. Lei Z, Liao S, Pietikainen M (2011) Face Recognition by Exploring Information jointly in Space, Scale, and Orientation. IEEE Trans Image Process 20(1):247–256

    Article  MathSciNet  Google Scholar 

  28. Lei Z, Liao S, Pietikäinen M, Li SZ (2011) Face recognition by exploring information jointly in space, scale and orientation. IEEE Trans Image Process 20(1):247–256

    Article  MathSciNet  Google Scholar 

  29. Libor S (2000) Face recognition data

  30. Liu L, Fieguth P, Guo Y, Wang X, Pietikainen M (2017) Local Binary Features for Texture Classification: Taxonomy and experimental study. Pattern Recogn 62:135–160

    Article  Google Scholar 

  31. Liu L, Long Y, Fieguth PW, Lao S, Zhao G (2014) BRINT: Binary Rotation Invariant and Noise Tolerant Texture Classification. IEEE Trans Image Process 23(7):3071–3084

    Article  MathSciNet  MATH  Google Scholar 

  32. Lyons MJ, Akemastu S, Kamachi M, Gyoba J (1998) Coding Facial Expressions with Gabor Wavelet. 3rd IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205

  33. Melendez J, Garcia MA, Puig D (2008) Efficient distance-based per-pixel texture classification with Gabor wavelet filters. Pattern Anal Applic 11(3):365–372

    Article  MathSciNet  Google Scholar 

  34. Nanni L, Brahnam S, Ghidoni S, Menegatti E, Barrier T (2013) Different Approaches for Extracting Information from the Co-Occurrence Matrix. PLoS One 8(12):1–9

    Article  Google Scholar 

  35. Nanni L, Brahnam S, Lumini A (2010) A local approach based on a local binary patterns variant texture descriptor for classifying pain states. Expert Syst Appl 37(12):7888–7894

    Article  Google Scholar 

  36. Nanni L, Lumini A, Brahnam S (2010) Local binary patterns variants as texture descriptors for medical image analysis. Artif Intell Med 49(2):117–125

    Article  Google Scholar 

  37. Nanni L, Lumini A, Brahnam S (2012) Survey on lbp based texture descriptors for image classification. Expert Syst Appl 39(3):3634–3641

    Article  Google Scholar 

  38. Nisenson M, Yariv I, El-Yaniv R, Meir R (2003) Towards behaviometric security systems: learning to identify a typist. Lecture Notes in Computer Science, pp. 363–374

  39. Ojala T, Pietikäinen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recogn 29(1):51–59

    Article  Google Scholar 

  40. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Patterns Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  41. Pietikäinen M, Hadid A, Zhao G, Ahonen T (2011) Computer vision using local binary patterns. Computational Imaging and Vision

  42. Pietikäinen M, Ojala T, Xu Z (2000) Rotation-invariant texture classification using feature distributions. Pattern Recogn 33(1):43–52

    Article  Google Scholar 

  43. Qi X, Xiao R, Li C-G, Qiao Y, Guo J, Tang X (2014) Pairwise Rotation Invariant Co-occurrence Local Binary Pattern. IEEE Trans Pattern Anal Mach Intell 36(11):2199–2213

    Article  Google Scholar 

  44. Qian X, Hua X-S, Chen P, Ke L (2011) PLBP: An Effective Local Binary Patterns Texture Descriptor with pyramid represenation. Pattern Recogn 44:2502–2515

    Article  Google Scholar 

  45. Ramirez Rivera A, Castillo R, Chae O (2013) Local directional number pattern for face analysis: Face and expression recognition. IEEE Trans Image Process 22(5):1740–1752

    Article  MathSciNet  MATH  Google Scholar 

  46. Rivera AR, Castillo JR, Chae O (2013) Local directional number pattern for face analysis: face and expression recognition. IEEE Trans Image Process 22(5):1740–1752

    Article  MathSciNet  MATH  Google Scholar 

  47. Rivera AR, Chae O (2015) Spatiotemporal directional number transitional graph for dynamic texture recognition. IEEE Trans Pattern Anal Mach Intell 37(10):2146–2152

    Article  Google Scholar 

  48. Sarasota FL (1994) Proceedings of 2nd IEEE Workshop on Applications of Computer Vision

  49. Satpathy A, Jiang X, Eng H (2014) Lbp based edge texture features for object recognition. IEEE Trans Image Process 23(5):1953–1964

    Article  MathSciNet  MATH  Google Scholar 

  50. Saul LK, Roweis ST (2003) Think globally, fit locally: unsupervised learning of low dimensional manifolds. The Journal of Machine Learning Research 4:119–155

    MathSciNet  MATH  Google Scholar 

  51. Silven O, Niskanen M, Kauppinen H (2003) Wood inspection with nonsupervised clustering. Mach Vis Appl 13:275–285

    Article  Google Scholar 

  52. Subrahmanyam Murala RP, Maheshwari RB (2012) Local Tetra Patterns: A New Feature Descriptor for Content-Based Image Retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  MATH  Google Scholar 

  53. Tan X, Triggs B (2010) Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Trans Image Process 19(6):1635–1650

    Article  MathSciNet  MATH  Google Scholar 

  54. Trefny J, Matas J (2010) Extended set of local binary patterns for rapid object detection. Proceedings of the Computer Vision Winter Workshop

  55. Turk MA, Pentland AP (1991) Eigenfaces for Recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  56. Varma M, Zisserman A (2009) A statistical approach to material classification using image patch exemplars. IEEE Trans Pattern Anal Mach Intell 31(11):2032–2047

    Article  Google Scholar 

  57. Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis 57:137–154

    Article  Google Scholar 

  58. Yang S, Bhanu B (2011) Facial expression recognition using emotion avatar image. In: IEEE Int. Conf. Autom. Face Gesture Recognit. Workshops (FG), pp. 866–871

  59. Yang J, Zhang D, Frangi AF, Yang J (2004) PCA Two-dimensional, a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Mach Intell 26(1):131–137

    Article  Google Scholar 

  60. Yin QB, Kim JN (2008) Rotation-invariant texture classification using circular Gabor wavelets based local and global features. Chin J Electron 17(4):646–648

    Google Scholar 

  61. Zhang B, Gao Y, Zhao S, Liu J (2010) Local Derivative Pattern Versus Local Binary Pattern: Face Recognition with High-Order Local Pattern Descriptor. IEEE Trans Image Process 19(2):533–543

    Article  MathSciNet  MATH  Google Scholar 

  62. Zhang B, Shan S, Chen X, Gao W (2007) Histogram of gabor phase patterns (hgpp): A novel object representation approach for face recognition. IEEE Trans Image Process 16(1):57–68

    Article  MathSciNet  Google Scholar 

  63. Zhang WC, Shan SG, Gao W, Zhang HM (2005) Local gabor binary pattern histogram sequence (LGBPHS): a novel non-statistical model for face representation and recognition. In: Proceedings of the 10th IEEE International Conference and Computer Vision, pp. 786–791

  64. Zhao G, Pietikäinen M (2007) Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans Pattern Anal Mach Intell 29(6):915–928

    Article  Google Scholar 

  65. Zhong F, Zhang J (2013) Face Recognition with Enhanced Local Directional Patterns. Neurocomputing 119:375–384

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taner Cevik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cevik, N., Cevik, T. DLGBD: A directional local gradient based descriptor for face recognition. Multimed Tools Appl 78, 15909–15928 (2019). https://doi.org/10.1007/s11042-018-6967-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-6967-4

Keywords

Navigation