Skip to main content
Log in

An LSB based novel data hiding method using extended LBP

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper we have proposed an LSB based data hiding method. Here, first cover image is encoded by LBP based method (call as ELBP). In ELBP method, a 3 × 3 block is encoded by k bits (1 ≤ k ≤ 9) respect to the central pixel. For data hiding purpose, the cover image is encoded by ELBP then r (1 ≤ r < k) bits are embedded into each neighbor pixel by replacing least r bits of the encoded stream and then modified pixel is processed by OPAP method to improve the quality of the stego image. Proposed method gives high quality stego images with higher embedding rate compare to the state-of-the-art methods. The security of the proposed data hiding method is tested against the attacks like RS steganalysis and Chi-square attack and these methods fail to detect hidden data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ash S, Mukherjee S, Sanyal G (2015) A dwt based steganographic method using prime first mapping (pfm). In: 2015 second international conference on Advances in computing and communication engineering (ICACCE). IEEE, Piscataway, pp 471–476

  2. Augot D, Barbier M, Fontaine C (2011) Ensuring message embedding in wet paper steganography. In: Cryptography and coding. Springer, Berlin Heidelberg, pp 244–258

  3. Bhattacharya T, Dey N, Chaudhuri S (2012) A session based multiple image hiding technique using dwt and dct. arXiv:1208.0950

  4. Cao Z, Yin Z, Hu H, Gao X, Wang L (2016) High capacity data hiding scheme based on (7, 4) hamming code. SpringerPlus 5(1):1–13

    Article  Google Scholar 

  5. Celik MU, Sharma G, Tekalp AM, Saber E (2005) Lossless generalized-lsb data embedding. IEEE Trans Image Process 14(2):253–266

    Article  Google Scholar 

  6. Chan CK, Cheng LM (2004) Hiding data in images by simple lsb substitution. Pattern Recogn 37(3):469–474

    Article  MATH  Google Scholar 

  7. Chang CC, Tseng HW (2004) A steganographic method for digital images using side match. Pattern Recogn Lett 25(12):1431–1437

    Article  Google Scholar 

  8. Chang CC, Hsiao JY, Chan CS (2003) Finding optimal least-significant-bit substitution in image hiding by dynamic programming strategy. Pattern Recogn 36 (7):1583–1595

    Article  Google Scholar 

  9. Chanu YJ, Tuithung T, Manglem Singh K (2012) A short survey on image steganography and steganalysis techniques. In: 2012 3rd national conference on emerging trends and applications in computer science (NCETACS). IEEE, Piscataway, pp 52–55

  10. Chen CC, Chang CC (2010) High capacity smvq-based hiding scheme using adaptive index. Signal Process 90(7):2141–2149

    Article  MATH  Google Scholar 

  11. Chen LST, Lin JC (2010) Steganography scheme based on side match vector quantization. Opt Eng 49(3):037,008–037,008

    Article  Google Scholar 

  12. Chen B, Zhang W, Ma K, Yu N (2014) Recursive code construction for reversible data hiding in dct domain. Multimedia Tools and Applications 72(2):1985–2009

    Article  Google Scholar 

  13. Chen YH, Huang HC, Lin CC (2016) Block-based reversible data hiding with multi-round estimation and difference alteration. Multimedia Tools and Applications 75(21):13,679–13,704

    Article  Google Scholar 

  14. Dhara BC, Chanda B (2004) Block truncation coding using pattern fitting. Pattern Recogn 37:2131– 2139

    Article  Google Scholar 

  15. Dhara BC, Chanda B (2012) A fast progressive image transmission scheme using block truncation coding by pattern fitting. J Vis Commun Image Represent 23 (2):313–322

    Article  Google Scholar 

  16. Fridrich J, Goljan M, Du R (2001) Reliable detection of lsb steganography in color and grayscale images. In: Proceedings of the 2001 workshop on multimedia and security: new challenges. ACM, New York, pp 27–30

  17. Fridrich J, Goljan M, Lisoněk P, Soukal D (2005) Writing on wet paper. IEEE Trans Signal Process 53(10):3923–3935

    Article  MathSciNet  MATH  Google Scholar 

  18. Gui X, Li X, Yang B (2014) A high capacity reversible data hiding scheme based on generalized prediction-error expansion and adaptive embedding. Signal Process 98:370–380

    Article  Google Scholar 

  19. Heikkilä M, Pietikäinen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recogn 42(3):425–436

    Article  MATH  Google Scholar 

  20. Jiang J, Armstrong A (2002) Data hiding approach for efficient image indexing. Electron Lett 38(23):1424–1425

    Article  Google Scholar 

  21. Jung KH, Yoo KY (2015) High-capacity index based data hiding method. Multimedia Tools and Applications 74(6):2179–2193

    Article  Google Scholar 

  22. Khan A, Siddiqa A, Munib S, Malik SA (2014) A recent survey of reversible watermarking techniques. Inf Sci 279:251–272

    Article  Google Scholar 

  23. Kim HJ, Sachnev V, Shi YQ, Nam J, Choo HG (2008) A novel difference expansion transform for reversible data embedding. IEEE Trans Inf Forensics Secur 3 (3):456–465

    Article  Google Scholar 

  24. Kossentini F, Smith MJ, Barnes CF (1995) Image coding using entropy-constrained residual vector quantization. IEEE Trans Image Process 4 (10):1349–1357

    Article  Google Scholar 

  25. Lee K, Westfeld A, Lee S (2006) Category attack for lsb steganalysis of jpeg images. In: Digital watermarking. Springer, Berlin, pp 35–48

  26. Li X, Yang B, Zeng T (2011) Efficient reversible watermarking based on adaptive prediction-error expansion and pixel selection. IEEE Trans Image Process 20 (12):3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  27. Li X, Li J, Li B, Yang B (2013) High-fidelity reversible data hiding scheme based on pixel-value-ordering and prediction-error expansion. Signal Process 93 (1):198–205

    Article  MathSciNet  Google Scholar 

  28. Liao WH (2010) Region description using extended local ternary patterns. In: 2010 20th international conference on pattern recognition (ICPR). IEEE, Piscataway , pp 1003–1006

  29. Lin CC, Shiu PF (2010) High capacity data hiding scheme for dct-based images. Journal of Information Hiding and Multimedia Signal Processing 1(3):220–240

    Google Scholar 

  30. Liu Y, Chang CC, Nguyen TS (2016) High capacity turtle shell-based data hiding. IET Image Process 10(2):130–137

    Article  Google Scholar 

  31. Lopes IO, Barcelos CA, Batista MA, Silva AM (2006) Enhanced watermarking scheme based on texture analysis. In: Advanced concepts for intelligent vision systems. Springer, Berlin Heidelberg, pp 746–756

  32. Mali SN, Patil PM, Jalnekar RM (2012) Robust and secured image-adaptive data hiding. Digital Signal Process 22(2):314–323

    Article  MathSciNet  Google Scholar 

  33. Manikandaprabu N, Pavithra S, Thilagamani V (2014) Data hiding in color images. International Journal of Novel Research in Engineering & Pharmaceutical Sciences 1(5):1–7

    Google Scholar 

  34. Nedelcu T, Coltuc D (2015) Alternate embedding method for difference expansion reversible watermarking. In: 2015 international symposium on signals, circuits and systems (ISSCS). IEEE, Piscataway, pp 1–4

  35. Ni Z, Shi YQ, Ansari N, Su W (2006) Reversible data hiding. IEEE Trans Circuits Syst Video Technol 16(3):354–362

    Article  Google Scholar 

  36. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  37. Ou D, Sun W (2015) High payload image steganography with minimum distortion based on absolute moment block truncation coding. Multimedia Tools and Applications 74(21):9117–9139

    Article  Google Scholar 

  38. Parah SA, Sheikh JA, Akhoon JA, Loan NA, Bhat GM (2016) Information hiding in edges: a high capacity information hiding technique using hybrid edge detection. Multimedia Tools and Applications 76:1–23

    Google Scholar 

  39. Pourreza-Shahri R, Yousefi S, Kehtarnavaz N (2014) A gradient-based optimization approach for reduction of blocking artifacts in jpeg images. Signal Process Image Commun 29(10):1079–1091

    Article  Google Scholar 

  40. Powell RD, Nitzberg MJ (2000) Data hiding based on neighborhood attributes. US Patent 6,137,892

  41. Qin C, Chang CC, Hsu TJ (2015) Reversible data hiding scheme based on exploiting modification direction with two steganographic images. Multimedia Tools and Applications 74(15):5861–5872

    Article  Google Scholar 

  42. Rabie T, Kamel I (2016) Toward optimal embedding capacity for transform domain steganography: a quad-tree adaptive-region approach. Multimedia Tools and Applications 76(6):8627–8650

    Article  Google Scholar 

  43. Rabie T, Kamel I, Baziyad M (2017) Maximizing embedding capacity and stego quality: curve-fitting in the transform domain. Multimedia Tools and Applications 77:1–32

    Google Scholar 

  44. Ranjani JJ (2016) Data hiding using pseudo magic squares for embedding high payload in digital images. Multimedia Tools and Applications 76(3):3715–3729

    Article  Google Scholar 

  45. Ren J, Liu J, Li M, Bai W, Guo Z (2013) Image blocking artifacts reduction via patch clustering and low-rank minimization. In: Data compression conference (DCC), 2013. IEEE, Piscataway, pp 516–516

  46. Stanley CA (2005) Pairs of values and the chi-squared attack

  47. Tian J (2003) Reversible data embedding using a difference expansion. IEEE Trans Circuits Syst Video Technol 13(8):890–896

    Article  Google Scholar 

  48. Varsaki EE, Fotopoulos V, Skodras AN (2013) Data hiding based on image texture classification. SIViP 7(2):247–253

    Article  Google Scholar 

  49. Wang Y, Yu Y (2008) An adaptive data hiding in wavelet domain based on texture analysis of image. In: ICALIP 2008. International conference on audio, language and image processing, 2008. IEEE, Piscataway, pp 1369–1372

  50. Wang RZ, Lin CF, Lin JC (2001) Image hiding by optimal lsb substitution and genetic algorithm. Pattern Recogn 34(3):671–683

    Article  MATH  Google Scholar 

  51. Westfeld A, Pfitzmann A (1999) Attacks on steganographic systems. In: International workshop on information hiding. Springer, Berlin, pp 61–76

  52. Wu DC, Tsai WH (2003) A steganographic method for images by pixel-value differencing. Pattern Recogn Lett 24(9):1613–1626

    Article  MATH  Google Scholar 

  53. Wu HC, Wu NI, Tsai CS, Hwang MS (2005) Image steganographic scheme based on pixel-value differencing and lsb replacement methods. IEE Proceedings-Vision, Image and Signal Processing 152(5):611–615

    Article  Google Scholar 

  54. Wu Q, Zhu C, Li JJ, Chang CC, Wang ZH (2016) A magic cube based information hiding scheme of large payload. Journal of Information Security and Applications 26:1–7

    Article  Google Scholar 

  55. Yang CH (2008) Inverted pattern approach to improve image quality of information hiding by lsb substitution. Pattern Recogn 41(8):2674–2683

    Article  MATH  Google Scholar 

  56. Zhang W, Zhang X, Wang S (2007) A double layered plus-minus one data embedding scheme. IEEE Signal Process Lett 14(11):848–851

    Article  Google Scholar 

  57. Zhang W, Zhang X, Wang S (2010) Near-optimal codes for information embedding in gray-scale signals. IEEE Trans Inf Theory 56(3):1262–1270

    Article  MathSciNet  MATH  Google Scholar 

  58. Zhao Z, Luo H, Lu ZM, Pan JS (2011) Reversible data hiding based on multilevel histogram modification and sequential recovery. AEU-Int J Electron C 65 (10):814–826

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sujit Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Dhara, B.C. An LSB based novel data hiding method using extended LBP. Multimed Tools Appl 77, 15321–15351 (2018). https://doi.org/10.1007/s11042-017-5117-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-017-5117-8

Keywords

Navigation