Skip to main content
Log in

Meaningful (2, i n f i n i t y) secret image sharing scheme based on flipping operations

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In this paper, a new method to construct a secret image sharing (SIS) scheme is proposed, where a secret image is shared into several shares by a perfect secure way without any knowledge of cryptography. A basic algorithm implemented by flipping operations with probability for constructing a meaningful (2, 2) SIS scheme is first proposed. Neither codebook tailor-made requirement nor pixel expansion is required in the proposed scheme. Additionally, the meaningful shares by the proposed scheme can be directly generated without any extra data hiding process. During the decrypting procedure, the secret image is visually revealed by performing XOR operations on two meaningful shares. In the following stage, a meaningful (2, i n f i n i t y) SIS scheme is extended underlying the basic algorithm, where the number of shares can be extended anytime. Further, no matter how large the number of the extended shares is, the visual qualities of both the meaningful share and revealed secret image remain unchanged. Finally, sufficient number of formal proofs are provided to validate the correctness of the proposed schemes, whose superiority is also demonstrated by the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ababneh S, Ansari R, Khokhar A (2009) Iterative compensation schemes for multimedia content authentication. J Vis Commun Image Represent 20(5):303–311

    Article  Google Scholar 

  2. Ateniese G, Blundo C, Santis AD, Stinson DR (2001) Extended capabilities for visual cryptography. Theor Comput Sci 250(1):143–161

    Article  MathSciNet  MATH  Google Scholar 

  3. Blakley G (1979) Safeguarding cryptographic keys. In: Proceedings of AFIPS 1979, national computer conference, vol 48, pp 313–317

  4. Blundo C, D’Arco P, De Santis A, Stinson DR (2003) Contrast optimal threshold visual cryptography schemes. SIAM J Discret Math 16(2):224–261

    Article  MathSciNet  MATH  Google Scholar 

  5. Blundo C, De Bonis A, De Santis A (2001) Improved schemes for visual cryptography. Designs. Codes Crypt 24(3):255–278

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen SK, Lin SJ (2012) Optimal (2, n) and (2, infinity) visual secret sharing by generalized random grids. J Vis Commun Image Represent 23(4):677–684

    Article  Google Scholar 

  7. Chen T, Tsao K (2011) Threshold visual secret sharing by random grids. J Syst Softw 84(7):1197–1208

    Article  Google Scholar 

  8. Chen TH, Tsao KH (2009) Visual secret sharing by random grids revisited. Pattern Recogn 42(9):2203–2217

    Article  MATH  Google Scholar 

  9. Chen TH, Tsao KH (2011) User-friendly random-grid-based visual secret sharing. IEEE Trans Circ Syst for Video Technol 21(11):1693–1703

    Article  Google Scholar 

  10. Guo T, Liu F, Wu C (2013) K out of k extended visual cryptography scheme by random grids. Signal Process 94:90–101

    Article  Google Scholar 

  11. Hofmeister T, Krause M, Simon HU (2000) Contrast-optimal k out of n secret sharing schemes in visual cryptography. Theor Comput Sci 240(2):471–485

    Article  MathSciNet  MATH  Google Scholar 

  12. Kafri O, Keren E (1987) Encryption of pictures and shapes by random grids. Opt Lett 12(6):377–379

    Article  Google Scholar 

  13. Koga H, Ueda E (2006) Basic properties of the (t, n)-threshold visual secret sharing scheme with perfect reconstruction of black pixels. Des Codes Crypt 40(1):81–102

    Article  MathSciNet  MATH  Google Scholar 

  14. Li H (2009) Image encryption based on gyrator transform and two-step phase-shifting interferometry. Opt Lasers Eng 47(1):45–50

    Article  Google Scholar 

  15. Lin C, Tsai W (2004) Secret image sharing with steganography and authentication. J Syst Softw 73(3):405–414

    Article  MathSciNet  Google Scholar 

  16. Liu F, Wu C (2011) Embedded extended visual cryptography schemes. IEEE Trans Inf Forensic Secur 6(2):307–322

    Article  Google Scholar 

  17. Liu F, Wu C, Lin X (2010) Step construction of visual cryptography schemes. IEEE Trans Inf Forensic Secur 5(1):27–38

    Article  Google Scholar 

  18. Liu F, Wu CK (2010) Optimal xor based (2, n)-visual cryptography schemes. IACR Cryptol ePrint Arch 2010:545

    Google Scholar 

  19. Lu P, Xu Z, Lu X, Liu X (2013) Digital image information encryption based on compressive sensing and double random-phase encoding technique. Optik-Int J for Light and Electron Opt 124(16):2514–2518

    Article  MathSciNet  Google Scholar 

  20. Naor M, Shamir A (1995) Visual cryptography. In: Advances in Cryptology EUROCRYPT’94. Springer, Berlin Heidelberg New York, pp 1–12

    Chapter  Google Scholar 

  21. Ou D, Sun W, Wu X (2015) Non-expansible xor-based visual cryptography scheme with meaningful shares. Signal Process 108(0):604–621

    Article  Google Scholar 

  22. Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613

    Article  MathSciNet  MATH  Google Scholar 

  23. Shyu SJ (2007) Image encryption by random grids. Pattern Recogn 40(3):1014–1031

    Article  MATH  Google Scholar 

  24. Shyu SJ (2009) Image encryption by multiple random grids. Pattern Recogn 42(7):1582–1596

    Article  MATH  Google Scholar 

  25. Tuyls P, Hollmann HD, Van Lint JH, Tolhuizen L (2005) Xor-based visual cryptography schemes. Designs. Codes Crypt 37(1):169–186

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang D, Zhang L, Ma N, Li X (2007) Two secret sharing schemes based on boolean operations. Pattern Recogn 40(10):2776–2785

    Article  MATH  Google Scholar 

  27. Wu X, Liu T, Sun W (2013) Improving the visual quality of random grid-based visual secret sharing via error diffusion. Journal of Visual Communication and Image Representation 24:552–556

    Article  Google Scholar 

  28. Wu X, Sun W (2012) Visual secret sharing for general access structures by random grids. IET Inf Secur 6(4):299–309

    Article  MathSciNet  Google Scholar 

  29. Wu X, Sun W (2013) Generalized random grid and its applications in visual cryptography. IEEE Trans Inf Forensic Secur 8(9):1541–1553

    Article  MathSciNet  Google Scholar 

  30. Yan X, Wang S, El-Latif AAA, Niu X (2014) Random grids-based visual secret sharing with improved visual quality via error diffusion. In: Multimedia tools application, pp 1–18

  31. Yang C, Chen T, Yu KH, Wang C (2007) Improvements of image sharing with steganography and authentication. J Syst Softw 80(7):1070–1076

    Article  Google Scholar 

  32. Zhang X, Qian Z, Ren Y, Feng G (2011) Watermarking with flexible self-recovery quality based on compressive sensing and compositive reconstruction. IEEE Trans Inf Forensic Secur 6(4):1223–1232

    Article  Google Scholar 

  33. Zhou N, Wang Y, Gong L (2011) Novel optical image encryption scheme based on fractional mellin transform. Opt Commun 284(13):3234–3242

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part supported by 973 Program (Grant No. 2011CB302400) and Natural Science Foundation of Guangdong Province, China (Grant No. S2013010013728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Duanhao Ou or Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, D., Sun, W. Meaningful (2, i n f i n i t y) secret image sharing scheme based on flipping operations. Multimed Tools Appl 75, 3517–3536 (2016). https://doi.org/10.1007/s11042-015-2462-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2462-3

Keywords

Navigation