Skip to main content
Log in

Synthesis and Properties of “Reduced Graphene Oxide –Copper” Composites Produced by the Method of Repeated Pressing and Sintering

  • COMPOSITE MATERIALS
  • Published:
Metal Science and Heat Treatment Aims and scope

We study composites with copper matrix reinforced by plates of graphene oxide produced by the method of repeated pressing and sintering. We determine the hardness, relative density, ultimate strength, elongation, and conductivity of composites made by applying different modes of pressing and sintering. The influence of the modes of treatment on the properties of composite is analyzed by the method of design of orthogonal experiments L16 (45). The optimal parameters of double pressing and sintering are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. L. Y. Chen, J. Y. Peng, J. Q. Xu et al. “Achieving uniform distribution and dispersion of a high percentage of nanoparticles in metal matrix nanocomposites by solidification processing,” Scr. Mater., 69, 634 – 637 (2013).

    Article  CAS  Google Scholar 

  2. S. C. Tjong, “Novel nanoparticle-reinforced metal matrix composites with enhanced mechanical properties,” Adv. Eng. Mater., 9, 639 – 652 (2007).

    Article  CAS  Google Scholar 

  3. J. B. Ferguson, F. Sheykh-Jaberi, C. S. Kim, et al. “On the strength and strain to failure in particle-reinforced magnesium metal matrix nanocomposites (Mg MMNCs),” Mater. Sci. Eng. A, 558, 193 – 204 (2012).

    Article  CAS  Google Scholar 

  4. C. S. Kim, Il. Sohn, M. Nezafati, et al. “Prediction models for the yield strength of particle reinforced unimodal pure magnesium (Mg) metal matrix nanocomposites (MMNCs),” J. Mater. Sci., 48, 4191 – 204 (2013).

    Article  CAS  Google Scholar 

  5. R. X. Zheng, H. Yang, T. Liu, et al. “Microstructure and mechanical properties of aluminum alloy matrix composites reinforced with Fe-based metallic glass particles,” Mater. Des., 53, 512 – 518 (2014).

    Article  CAS  Google Scholar 

  6. A. S. Prosviryakov, “SiC content effect on the properties of Cu – SiC composites produced by mechanical alloying,” J. Alloys Compd., 632, 707 – 710 (2015).

    Article  CAS  Google Scholar 

  7. D. S. Zhou, W. Zeng, and D. L. Zhang, “A feasible ultrafine grained Cu matrix composite microstructure for achieving high strength and high electrical conductivity,” J. Alloys Compd., 682, 590 – 593 (2016).

    Article  CAS  Google Scholar 

  8. Gh. A. Bagheri, “The effect of reinforcement percentages on properties of copper matrix composites reinforced with TiC particles,” J. Alloys Compd., 676, 120 – 126 (2016).

    Article  CAS  Google Scholar 

  9. S. C. Tjong, “Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets,” Mater. Sci. Eng. R, 74, 281 – 350 (2013).

    Article  Google Scholar 

  10. S. Cho, K. Kikuchi, and A. Kawasaki, “On the role of amorphous intergranular and interfacial layers in the thermal conductivity of a multi-walled carbon nanotube – copper matrix composite,” Acta Mater., 60, 726 – 736 (2013).

    Article  Google Scholar 

  11. K. T. Kim, S. I. Cha, S. H. Hong, et al. “Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites,” Mater. Sci. Eng. A, 430, 27 – 33 (2006).

    Article  Google Scholar 

  12. Z. W. Xue, L. D. Wang, P. T. Zhao, et al. “Microstructures and tensile behavior of carbon nanotube reinforced Cu matrix nanocomposites with molecular-level dispersion,” Mater. Des., 34, 298 – 301 (2012).

    Article  CAS  Google Scholar 

  13. F. Schedin, A. K. Geim, S. V. Morozov, et al. “Detection of individual gas molecules adsorbed on grapheme,” Nat. Mater., 6, 652 – 657 (2007).

    Article  CAS  Google Scholar 

  14. M. A. Rafiee, J. Rafiee, Z. Wang, et al. “Enhanced mechanical properties of nanocomposites at low graphene content,” ACS Nano., 12, 3884 – 3890 (2009).

    Article  Google Scholar 

  15. C. Lee, X. D.Wei, J.W. Kysar, et al. “Measurement of the elastic properties and intrinsic strength of monolayer grapheme,” Science, 321, 385 – 388 (2008).

    Article  CAS  Google Scholar 

  16. W. J. Kim, T. J. Lee, and S. H. Han, “Multi-layer graphene/copper composites: Preparation using high-ratio differential speed rolling, microstructure and mechanical properties,” Carbon, 69, 55 – 65 (2014).

    Article  CAS  Google Scholar 

  17. X. J. Zhang, K. F. Wu, M. He, et al. “Facile synthesis and characterization of reduced graphene oxide/copper composites using freeze-drying and spark plasma sinterin,” Mater. Lett., 166, 67 – 70 (2016).

    Article  Google Scholar 

  18. M. X. Li, J. Xie, Y. D. Li, et al. “Reduced graphene oxide dispersed in copper matrix composites: Facile preparation and enhanced mechanical properties,” Phys. Status Solidi A, 212, 2154 – 2161 (2015).

    Article  CAS  Google Scholar 

  19. F. Y. Chen, J. M. Ying, Y. F. Wang, et al. “Effects of grapheme content on the microstructure and properties of copper matrix composites,” Carbon, 96, 836 – 842 (2016).

    Article  CAS  Google Scholar 

  20. J. Dutkiewicz, P. Ozga, W. Maziarz, et al. “Microstructure and properties of bulk copper matrix composites strengthened with various kinds of graphene nanoplatelets,” Mater. Sci. Eng. A., 628, 124 – 134 (2015).

    Article  CAS  Google Scholar 

  21. H. Y. Yue, L. H. Yao, X. Gao, et al. “Effect of ball-milling and graphene contents on the mechanical properties and fracture mechanisms of graphene nanosheets reinforced copper matrix composites,” J. Alloys Compd., 691, 755 – 762 (2017).

    Article  CAS  Google Scholar 

  22. L. Zhang, E. Pollak, W. C. Wang, et al. “Electronic structure study of ordering and interfacial interaction in grapheme/Cu composites,” Carbon, 50, 5316 – 5322 (2017).

    Article  Google Scholar 

  23. J. A. Rodriguez, J. M. Gallardo, and E. J. Herrera, “Consolidation of mechanically alloyed aluminum by double cold-pressing and sintering,” J. Mater. Proc. Technol., 56, 254 – 262 (1996).

    Article  Google Scholar 

  24. N. B. Thomas and M. Debasis, “Characterization of x-ray irradiated graphene oxide coatings using x-ray diffraction, x-ray photoelectron spectroscopy and atomic force microscopy,” Powder Diffr., 28, 68 – 71 (2013).

    Article  Google Scholar 

  25. T. Varol A. and Canakci, “Microstructure, electrical conductivity and hardness of multilayer grapheme/copper nanocomposites synthesized by flake powder metallurgy,” Met. Mater. Int., 21, 704 – 712 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ha. Zheng.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 56 – 62, June, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gua, S., Zheng, H., Shu, X. et al. Synthesis and Properties of “Reduced Graphene Oxide –Copper” Composites Produced by the Method of Repeated Pressing and Sintering. Met Sci Heat Treat 61, 387–393 (2019). https://doi.org/10.1007/s11041-019-00434-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-019-00434-x

Key words

Navigation