Skip to main content
Log in

Transformations of Supercooled Austenite in Promising High-Hardenability Machine Steels

  • STRUCTURAL STEELS
  • Published:
Metal Science and Heat Treatment Aims and scope

We study special features of the transformation of supercooled austenite under the continuous cooling of Si – Mn steels with reduced contents of nickel as compared with traditionally used machine steels. The temperature ranges of the phase and structural transformations running under the conditions of heating and cooling of steels are determined by the dilatometric method. We plot the thermokinetic diagrams of transformations of supercooled austenite. The microstructural components formed in the investigated steels are analyzed both qualitatively and quantitatively. We also propose the chemical compositions of promising steels characterized by a high stability of supercooled austenite and high hardenability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. A. S. Zubchenko (ed.), Grades of Steels and Alloys [in Russian], Mashinostroenie, Moscow (2001).

    Google Scholar 

  2. L. E. Popova and A. A. Popov, Diagrams of the Transformation of Austenite in Steels and Beta-Solution in Titanium Alloys [in Russian], Metallurgiya, Moscow (1991).

    Google Scholar 

  3. ASM Handbook. Vol. 1. Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM International, Metals Park (2008).

  4. F. G. Caballero, “Carbide-free bainite in steels,” in: E. Pereloma and D. V. Edmonds (eds.), Phase Transformations in Steels, Woodhead Publ., Oxford (2012), Vol. 1, pp. 436 – 467.

  5. M. Soliman and H. Palkowski, “Microstructure development and mechanical properties of medium carbon carbide-free bainite steels,” Proc. Eng., 81, 1306 – 1311 (2014).

    Article  CAS  Google Scholar 

  6. X. Y. Long, J. Kang, B. Lv, and F. C. Zhang, “Carbide-free bainite in medium carbon steel,” Mater. Design, 64, 237 – 245 (2014).

    Article  CAS  Google Scholar 

  7. J. G. Speer, E. De Moor, and A. J. Clarke, “Critical assessment 7: Quenching and partitioning,” Mater. Sci. Tech., 31, 3 – 9 (2015).

    Article  CAS  Google Scholar 

  8. Y. Toji, G. Miyamoto, and D. Raabe, “Carbon partitioning during quenching and partitioning heat treatment accompanied by carbide precipitation,” Acta Mater., 86, 137 – 147 (2015).

    Article  CAS  Google Scholar 

  9. J. Sun, H. Yu, S. Wang, et al., “Study of microstructural evolution, microstructure-mechanical properties correlation, and collaborative deformation-transformation behavior of quenching and partitioning (Q&P) steel,” Mater. Sci. Eng. A, 596, 89 – 97 (2014).

    Article  CAS  Google Scholar 

  10. A. Arlazarov, O. Bouaziz, J. Masse, et al., “Characterization and modeling of mechanical behavior of quenching and partitioning steels,” Mater. Sci. Eng. A, 620, 293 – 300 (2015).

    Article  Google Scholar 

  11. M. Jahazi and G. Ebrahimi, “The influence of flow-forming parameters and microstructure on the quality of a D6ac steel,” J. Mater. Proc. Tech., 103(3), 362 – 366 (2000).

    Article  Google Scholar 

  12. J. Pritchard and S. Rush, Vacuum hardening high strength steels: oil versus gas quenching, Heat Treating Progr., Nos. 5 – 6, 19 – 23 (2007).

  13. J. Chiang, J. D. Boyd, and A. K. Pilkey, “Effect of microstructure on retained austenite stability and tensile behavior in an aluminum-alloyed TRIP steel,” Mater. Sci. Eng. A, 638, 132 – 142 (2015).

    Article  CAS  Google Scholar 

  14. P. Zhao, B. Zhang, C. Cheng, et al., “The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength Mn – Si – Cr – C steel,” Mater. Sci. Eng., 645, 116 – 121 (2015).

    Article  CAS  Google Scholar 

  15. A. Varshney, S. Sangal, S. Kundu, et al., “Super strong and highly ductile low alloy multiphase steels consisting of bainite, ferrite, and retained austenite,” Mater. Design, 95, 75 – 88 (2016).

    Article  CAS  Google Scholar 

  16. È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 1.

  17. È. A. Gudremon, Special Steels [in Russian], Metallurgiya, Moscow (1966), Vol. 2.

  18. Yu. V. Yudin, M. A. Gervas’ev, and T. A. Kansafarova, “Influence of chromium and nickel on the stability of supercooled austenite in chromium-nickel-molybdenum steels,” Fiz. Met. Metalloved., 87(4), 99 – 102 (1999).

    CAS  Google Scholar 

  19. V. A. Malyshevskii, T. G. Semicheva, and E. I. Khlusova, “Influence of alloying elements and structure on the properties of low-carbon improvable steels,” Metalloved. Term. Obrab. Met., No. 9, 5 – 9 (2001).

  20. S. Goto, C. Kami, and S. Kawamura, “Effect of alloying elements and hot-rolling conditions on microstructure of bainitic-ferrite_martensite dual phase steel with high toughness,” Mater. Sci. Eng. A, 648, 436 – 442 (2015).

    Article  CAS  Google Scholar 

  21. E. M. Grinberg, G. G. Laricheva, and E. S. Miroshnik, “Influence of boron on the transformations of steel in the course of tempering,” Metalloved. Term. Obrab. Met., No. 9, 4 – 6 (1991).

  22. D. Li, Y. Feng, S. Song, et al., “Influences of Nb-microalloying on microstructure and mechanical properties of Fe – 25Mn – 3Si – 3Al TWIP steel,” Mater. Design, 84, 238 – 244 (2015).

    Article  CAS  Google Scholar 

  23. S. Sadeghpour, A. Kermanpur, and A. Najafizadeh, “Influence of Ti microalloying on the formation of nanocrystalline structure in the 201L austenitic stainless steel during martensite thermomechanical treatment,” Mater. Sci. Eng. A, 584, 177 – 183 (2013).

    Article  CAS  Google Scholar 

  24. M. A. Ryzhkov and A. A. Popov, “Methodological aspects of plotting of thermokinetic diagrams of transformation of supercooled austenite in low-alloy steels,” Metal Sci. Heat Treat., 52, 612 – 616 (2011).

    CAS  Google Scholar 

  25. T. A. Kop, J. Sietsma, and S. Van Der Zwaag, “Dilatometric analysis of phase transformations in hypo-eutectoid steels,” J. Mater. Sci., 36, 519 – 526 (2001).

    Article  CAS  Google Scholar 

  26. M. V. Maisuradze, Yu. V. Yudin, and M. A. Ryzhkov, “Numerical simulation of pearlitic transformation in steel 45Kh5MF,” Metal Sci. Heat Treat., 56, 512 – 516 (2015).

    Article  CAS  Google Scholar 

  27. L. Huiping, Z. Guoqun, and N. Shanting, “FEM simulation of quenching process and experimental verification of simulation results,” Mater. Sci. Eng. A, 452 – 453, 705 – 714 (2007).

    Article  Google Scholar 

  28. J. C. Ion, K. E. Easterling, and M. F. Ashby, “Asecond report on diagrams of microstructure and hardness for heat-affected zones in welds,” Acta Metall., 32, 1949 – 1962 (1984).

    Article  CAS  Google Scholar 

  29. V. D. Sadovskii, Structural Heredity of Steels [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  30. M. A. Ryzhkov,M. V. Maisuradze, Yu. V. Yudin, et al., “Experience in improving silicon steel component heat treatment quality,” Metallurgist, 59, 401 – 405 (2015).

    Article  CAS  Google Scholar 

  31. M. A. Smirnov, V. M. Schastlivtsev, L. G. Zhuravlev, Fundamentals of Thermal Treatment of Steels [in Russian], UrD RAS, Ekaterinburg (1999).

    Google Scholar 

  32. Y. Li, Y. Lu, C. Wang, et al., “Phase stability of residual austenite in 60Si2Mn steels treated by quenching and partitioning,” J. Iron Steel Res. Int., 18, 70 – 74 (2011).

    Article  Google Scholar 

  33. M. J. Santofimia, L. Zhao, R. Petrov, et al., “Characterization of the microstructure obtained by the quenching and partitioning process in a low-carbon steel,” Mater. Charact., 59, 1758 – 1764 (2008).

    Article  CAS  Google Scholar 

  34. D. P. Koistinen and R. E. Marburger, “A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels,” Acta Metallurg., 7(1), 59 – 60 (1959).

    Article  Google Scholar 

  35. T. Domañski, W. Piekarska, and M. Kubiak, “Determination of the final microstructure during processing carbon steel hardening,” Proc. Eng., 136, 77 – 81 (2016).

    Article  Google Scholar 

Download references

The present work was performed under the financial support according to Resolution 211 of the Government of Russian Federation, Contract No. 02.A03.21.0006, within the framework of the state task of the Ministry of Education and Science of RF, Project No. 11.1465.2014/K and under the Grant of the President of RF for young scientists (candidates of science) MK-7929.2016.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Maisuradze.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 6, pp. 3 – 11, June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maisuradze, M.V., Ryzhkov, M.A. & Surnaeva, O.A. Transformations of Supercooled Austenite in Promising High-Hardenability Machine Steels. Met Sci Heat Treat 60, 339–347 (2018). https://doi.org/10.1007/s11041-018-0281-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0281-7

Key words

Navigation