Skip to main content
Log in

A Study of the Structure and Properties of Aluminum Alloys with Copper Produced Under Superfast Cooling of Melt

  • Published:
Metal Science and Heat Treatment Aims and scope

The methods of x-ray diffraction analysis, electron microscopy and hardness measurement are used to compare the structures and properties of strips from Al – Cu alloys (5, 10 and 30 at.% Cu) obtained under the conditions of superfast cooling of the melt for different quenching temperatures and alloy compositions. The crystal structure of all the strips contains α-Al and Al2Cu phases. The effect of the heat treatment of the melt on the morphology, size and content of the structural components and on the microhardness of the strips is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. The electron microscope study has been performed at the Collaborative Access Center “Testing Center of Nanotechnology and Advanced Materials” of the IFM UrO RAN.

References

  1. H. Al-Hilfi Aziz, “Rapid solidification of Cu – Al and its effects on some of the properties of these alloys and their corrosion rates,” J. Basrah Res. (Sci.), 34(1), 31 – 40 (2008).

    Google Scholar 

  2. I. S. Miroshnichenko, Quenching from Liquid State [in Russian], Metallurgiya, Moscow (1982), 168 p.

    Google Scholar 

  3. V. M. Zamyatin and B. A. Baum, “Nonequilibrium condition of metallic melt and other factors determining the quality of metal products,” Rasplavy, No. 3, 12 – 20 (2010).

  4. B. Xiufang, P. Xuemin, Q. Xubo, and J. Minhua, “Mediumrange order clusters in metal melts,” Sci. China, Ser. E, 45(2), 113 – 119 (2002).

    Google Scholar 

  5. I. G. Brodova, P. S. Popel’, N. M. Barbin, et al., Melts as the Base of Formation of Structure and Properties of Aluminum Alloys [in Russian], UrO RAN, Ekaterinburg (2005), 370 p.

    Google Scholar 

  6. S. G. Menshikova, “Viscosity and process of crystallization of melts of the Al – Cu system,” in: Abs. Rep. XII Russian Yearly Conf. of Young Scientists and Post-Graduate Students “Physical Chemistry and Technology of Inorganic Materials” [in Russian], IMET RAN, Moscow (2015), p. 254.

  7. S. G. Menshikova, A. L. Bel’tyukov, and V. I. Lad’yanov, “About special features of viscosity of melts of Al70Cu30 and Al65Cu35,” Vest. Kazan. Tekhnol. Univ., 17(23), 140 – 143 (2014).

    CAS  Google Scholar 

  8. Mihua Sun and Xiufang Bian, “Abnormal changes in the viscosity behavior of Al80Cu20 melt and its relationship to the glass-forming ability,” Mater. Lett., 56, 620 – 623 (2002).

    Article  CAS  Google Scholar 

  9. N. Yu. Konstantinova, A. R. Kurochkin, A. V. Borisenko, et al., “Viscosity of aluminum-copper melts,” Rasplavy, No. 2, 157 – 163 (2016).

  10. Y. Plevachuk, V. Sklyarchuk, A. Yakymovych, et al., “Density, viscosity, and electrical conductivity of hypoeutectic Al – Cu liquid alloys,” Metall. Mater. Trans. A, 39A, 340 – 345 (2008).

    Google Scholar 

  11. D. K. Lysakov and O. A. Chikova, Viscosity of liquid Al – Cu alloys,” Rasplavy, No. 4, 31 – 36 (2007).

  12. L. Battezati and A. L. Greer, “The viscosity of liquid metals and alloys,” Acta Metall., 37, 1791 – 1802 (1939).

    Article  Google Scholar 

  13. D. Wang and R. A. Overflelt, “Oscillating cup viscosity measurements of aluminum alloys: A201, A213 and A356,” Int. J. Thermophys., 23(4), 1063 – 1076 (2002).

    Article  CAS  Google Scholar 

  14. V. M. Zamyatin, Ya. A. Nasyirov, N. I. Klassen, et al., “Abnormalities on viscosity polytherms of liquid alloys of the aluminum-copper system,” Zh. Fiz. Khim., 6(1), 243 – 245 (1986).

  15. M. Schick, J. Brillo, I. Egry, and B. Hallstedt, “Viscosity of Al – Cu liquid alloys: measurement and thermodynamic description,” J. Mater. Sci., 47, 8145 – 8152 (2012).

    Article  CAS  Google Scholar 

  16. V. I. Mazur, S. A. Osetrov, A. G. Prigunova, et al., “Model of the structure of eutectic melts in the Al – Si, Al – Si – Na and Al – Cu systems,” Fiz. Met. Matalloved., 43(5), 1071 – 1027 (1977).

    Google Scholar 

  17. V. A. Plotnikov, “Acoustic dissipation of energy under decomposition of supersaturated solid solution,” Pis’ma Zh. Teor. Fiz., 27(21), 84 – 89 (2001).

    Google Scholar 

  18. S. Habibi, B. Jaleh, A. Namdarmanesh, and M. Shamlo, “Effect of heat treatment on microhardness of some Al – Cu alloys prepared by vacuum coating,” Mater. Sci. Appl., No. 5, 491 – 495 (2014).

  19. G. Dlubek, K. Pawelzyk, and W. Heyroth, “Position studies of precipitation phenomena in rapidly solidified Al alloys,” Acta Univ. Carolinae, Mathem. Phys., 32(1), 113 – 117 (1991).

    Google Scholar 

  20. S. Li, Z. Ren, W. Ren, et al., “Nucleation and growth behaviors of primary phase in Al – Cu hypereutectic alloy in high magnetic fields,” Progr. Electromag. Res. Lett., 18, 71 – 84 (2010).

    Article  CAS  Google Scholar 

  21. Yu. P. Kurilo, A. I. Somov, A. S. Tortika, and O. V. Chernyi, “Morphology of structure and microhardness of Al-(Ni, Cu, Be, Fe, Co) eutectic compositions,” Fiz. Met. Metalloved., 35(2), 347 – 354 (1973).

    CAS  Google Scholar 

  22. V. E. Semenenko, A. A. Kasilov, and T. A. Kovalenko, “Effect of heat treatment on the aging kinetics of natural Al – CuAl2 microcomposite,” J. Kharkiv Univ., Phys. Ser. “Nuclei, Particles, Fields,” No. 991(1), 90 – 94 (2012).

  23. V. A. Zhorin, M. R. Kiselev, L. L. Mukhina, et al., “X-ray and calorimetric study of Al – Cu mixtures after high-pressure plastic deformation,” Khim. Fiz., 27(2), 39 – 46 (2008).

    CAS  Google Scholar 

  24. V. O. Esin, A. S. Krivonosova, I. Zh. Sattybaev, et al., “Effect of pressure on redistribution of copper in solid solution and parameters of dendritic structure of single crystals of alloy Al – 4% Cu under crystallization in a weak magnetic field,” Fiz. Met. Metalloved., 110(4), 349 – 355 (2010).

    CAS  Google Scholar 

  25. Hsiun-Chang Peng and Long-Sun Chao, “Simulation of dendritic growth in solidification of Al – Cu alloy by applying the modified cellular automaton model with the growth calculation of nucleus within a cell,” Cellular Automata-Innov. Model. Sci. Eng., No. 1, 221 – 230 (2011).

  26. A. V. Rozhnin, V. M. Zamyatin, Yu. N. Akshentsev, and V. S. Mushnikov, “Thermal analysis of the crystallization process of Al – Cu alloys,” Rasplavy, No. 4, 77 – 81 (2011).

  27. W. Winegard, An Introduction into the Physics of Crystallization of Metals [in Russian translation], Mir, Moscow (1967), 156 p.

    Google Scholar 

  28. V. Manov, A. Rubstein, A. Voronel, et al., “Effect of melt temperature on the electrical resistivity and crystallization temperature of Al91Ce5Ni4 and Al91La5Ni4 amorphous alloys,” Mater. Sci. Eng., No. 3, 91 (1994).

Download references

The study has been performed with financial support of the Russian Foundation for Basic Research within Scientific Project No. 15-02-06288a, the Program for Integration Fundamental Research of the Ural Branch of the Russian Academy of Sciences, Project No. 15-17-2-9, State Assignment No. 01201463331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Menshikova.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 3, pp. 45 – 52, March, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menshikova, S.G., Shirinkina, I.G., Brodova, I.G. et al. A Study of the Structure and Properties of Aluminum Alloys with Copper Produced Under Superfast Cooling of Melt. Met Sci Heat Treat 60, 177–184 (2018). https://doi.org/10.1007/s11041-018-0257-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-018-0257-7

Key words

Navigation