Skip to main content
Log in

Persistence Properties and Unique Continuation of Solutions to a Two-component Camassa–Holm Equation

  • Published:
Mathematical Physics, Analysis and Geometry Aims and scope Submit manuscript

Abstract

We will consider a two-component Camassa–Holm system which arises in shallow water theory. The present work is mainly concerned with persistence properties and unique continuation to this new kind of system, in view of the classical Camassa–Holm equation. Firstly, it is shown that there are three results about these properties of the strong solutions. Then we also investigate the infinite propagation speed in the sense that the corresponding solution does not have compact spatial support for t > 0 though the initial data belongs to \(C_{0}^{\infty}(\Bbb{R})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beals, R., Sattinger, D., Szmigielski, J.: Multi-peakons and a theorem of Stieltjes. Inverse Problems 15(1), L1–L4 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bressan, A., Constantin, A.: Global conservative solutions of the Camassa–Holm equation. Arch. Ration. Mech. Anal. 183(2), 215–239 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bressan, A., Constantin, A.: Global dissipative solutions of the Camassa–Holm equation. Anal. Appl. (Singap.) 5(1), 1–27 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boutet de Monvel, A., Kostenko, A., Shepelsky, D., Teschl, G.: Long-time asymptotics for the Camassa–Holm equation. SIAM J. Math. Anal. 41(4), 1559–1588 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Constantin, A.: Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann. Inst. Fourier (Grenoble) 50(2), 321–362 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Constantin, A.: Finite propagation speed for the Camassa–Holm equation. J. Math. Phys. 46(2), 023506, 4 pp. (2005)

    Article  MathSciNet  ADS  Google Scholar 

  7. Constantin, A.: The trajectories of particles in Stokes waves. Invent. Math. 166(3), 523–535 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Constantin, A., Escher, J.: Well-posedness, global existence, and blowup phenomena for a periodic quasi-linear hyperbolic equation. Commun. Pure Appl. Math. 51(5), 475–504 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Constantin, A., Escher, J.: Wave breaking for nonlinear nonlocal shallow water equations. Acta Math. 181(2), 229–243 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Constantin, A., Escher, J.: Particle trajectories in solitary water waves. Bull. Amer. Math. Soc. (N.S.) 44(3), 423–431 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin, A., Gerdjikov, V., Ivanov, R.: Inverse scattering transform for the Camassa–Holm equation. Inverse Problems 22(6), 2197–2207 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Constantin, A., Ivanov, R.: On an integrable two-component Camassa–Holm shallow water system. Phys. Lett. A 372(48), 7129–7132 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Constantin, A., Lannes, D.: The hydrodynamical relevance of the Camassa–Holm and Degasperis–Procesi equations. Arch. Ration. Mech. Anal. 192(1), 165–186 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin, A., McKean, H.: A shallow water equation on the circle. Commun. Pure Appl. Math. 52(8), 949–982 (1999)

    Article  MathSciNet  Google Scholar 

  15. Constantin, A., Molinet, L.: Global weak solutions for a shallow water equation. Commun. Math. Phys. 211(1), 45–61 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Constantin, A., Strauss, W.: Stability of peakons. Commun. Pure Appl. Math. 53(5), 603–610 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Camassa, R., Holm, D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71(11), 1661–1664 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Chen, M., Liu, S., Zhang, Y.: A two-component generalization of the Camassa–Holm equation and its solutions. Lett. Math. Phys. 75(1), 1–15 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Escher, J., Lechtenfeld, O., Yin, Z.: Well-posedness and blow-up phenomena for the 2-component Camassa–Holm equation. Discrete Contin. Dyn. Syst. 19(3), 493–513 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Falqui, G.: On a Camassa–Holm type equation with two dependent variables. J. Phys. A 39(2), 327–342 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Fuchssteiner, B., Fokas, A.: Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. D 4(1), 47–66 (1981/82)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, Z.: Blow-up and global solutions to a new integrable model with two components. J. Math. Anal. Appl. 372(1), 316–327 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, Z., Zhou, Y.: On solutions to a two-component generalized Camassa–Holm equation. Stud. Appl. Math. 124(3), 307–322 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Henry, D.: Compactly supported solutions of the Camassa–Holm equation. J. Nonlin. Math. Phys. 12(3), 342–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Henry, D.: Infinite propagation speed for a two component Camassa–Holm equation. Discrete Contin. Dyn. Syst. Ser. B 12(3), 597–606 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Himonas, A., Misiolek, G., Ponce, G., Zhou, Y.: Persistence properties and unique continuation of solutions of the Camassa–Holm equation. Commun. Math. Phys. 271(2), 511–522 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Ivanov, R.: Water waves and integrability. Philos. Trans. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 365(1858), 2267–2280 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Johnson, R.: Camassa–Holm, Korteweg-de Vries and related models for water waves. J. Fluid Mech. 455, 63–82 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Mustafa, O.G.: On smooth traveling waves of an integrable two-component Camassa–Holm shallow water system. Wave Motion 46(6), 397–402 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Olver, P., Rosenau, P.: Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys. Rev. E (3) 53(2), 1900–1906 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  31. Toland, J.: Stokes waves. Topol. Methods Nonlinear Anal. 7(1), 1–48 (1996)

    MathSciNet  MATH  Google Scholar 

  32. Whitham, G.: Linear and Nonlinear Waves. Reprint of the 1974 Original, xviii+636 pp.. Pure and Applied Mathematics (New York). A Wiley-Interscience Publication. Wiley, New York (1999)

    Google Scholar 

  33. Xin, Z., Zhang, P.: On the weak solution to a shallow water equation. Commun. Pure Appl. Math. 53(11), 1411–1433 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhou, Y.: Wave breaking for a shallow water equation. Nonlinear Anal. 57(1), 137–152 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhou, Y.: Wave breaking for a periodic shallow water equation. J. Math. Anal. Appl. 290(2), 591–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zhou, Y.: Stability of solitary waves for a rod equation. Chaos Solitons Fractals 21(4), 977–981 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Zhou, Y., Guo, Z.: Blow up and propagation speed of solutions to the DGH equation. Discrete Contin. Dyn. Syst., Ser. B 12(3), 657–670 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidiao Ni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, Z., Ni, L. Persistence Properties and Unique Continuation of Solutions to a Two-component Camassa–Holm Equation. Math Phys Anal Geom 14, 101–114 (2011). https://doi.org/10.1007/s11040-011-9089-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11040-011-9089-z

Keywords

Mathematics Subject Classifications (2010)

Navigation