Skip to main content

Advertisement

Log in

Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Current approaches for managing benzodiazepine (BZD) withdrawal symptoms are daunting for clinicians and patients, warranting novel treatment and management strategies. This review discusses the pharmacodynamic properties of BZDs, gabapentinoids (GBPs), endozepines, and novel GABAergic compounds associated with potential clinical benefits for BZD-dependent patients. The objective of this study was to review the complex neuromolecular changes occurring within the GABAergic and glutamatergic systems during the BZD tolerance and withdrawal periods while also examining the mechanism by which GBPs and alternative pharmacological therapies may attenuate withdrawal symptoms.

Methods and Results

An elaborative literature review was conducted using multiple platforms, including the National Center for Biotechnology (NCBI), AccessMedicine, ScienceDirect, pharmacology textbooks, clinical trial data, case reports, and PubChem. Our literature analysis revealed that many distinctive neuroadaptive mechanisms are involved in the GABAergic and glutamatergic systems during BZD tolerance and withdrawal. Based on this data, we hypothesize that GBPs may attenuate the overactive glutamatergic system during the withdrawal phase by an indirect presynaptic glutamatergic mechanism dependent on the α2δ1 subunit expression.

Conclusions

GBPs may benefit individuals undergoing BZD withdrawal, given that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor current significantly increases during abrupt BZD withdrawal in animal studies. This may be a conceivable explanation for the effectiveness of GBPs in treating both alcohol withdrawal symptoms and BZD withdrawal symptoms in some recent studies. Finally, natural and synthetic GABAergic compounds with unique pharmacodynamic properties were found to exert potential clinical benefits as BZD substitutes in animal studies, though human studies are lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Calcaterra NE, Barrow JC (2014) Classics in chemical neuroscience: DZP (valium). ACS Chem Neurosci 5:253–260. https://doi.org/10.1021/cn5000056

    Article  CAS  Google Scholar 

  2. Cosci F, Chouinard G (2020) Acute and persistent withdrawal syndromes following discontinuation of psychotropic medications. Psychother Psychosom 89:283–306. https://doi.org/10.1159/000506868

    Article  Google Scholar 

  3. Liebrenz M, Gehring MT, Buadze A, Caflisch C (2015) High-dose benzodiazepine dependence: a qualitative study of patients’ perception on cessation and withdrawal. BMC Psychiatry. https://doi.org/10.1186/s12888-015-0493-y

    Article  Google Scholar 

  4. Fluyau D, Revadigar N, Manobianco BE (2018) Challenges of the pharmacological management of benzodiazepine withdrawal, dependence, and discontinuation. Ther Adv Psychopharmacol 8:147–168. https://doi.org/10.1177/2045125317753340

    Article  CAS  Google Scholar 

  5. Brett J, Murnion B (2015) Management of benzodiazepine misuse and dependence. Aust Prescr 38:152–155. https://doi.org/10.18773/austprescr.2015.055

    Article  Google Scholar 

  6. Lader M, Olajide D (1987) A comparison of buspirone and placebo in relieving benzodiazepine withdrawal symptoms. J Clin Psychopharmacol 7:11–15

    Article  CAS  Google Scholar 

  7. Markota M, Morgan RJ (2017) Treatment of generalized anxiety disorder with gabapentin. Case Rep Psychiatry. https://doi.org/10.1155/2017/6045017

    Article  Google Scholar 

  8. Anton RF, Latham P, Voronin K, Book S, Hoffman M, Prisciandaro J, Bristol E (2020) Efficacy of gabapentin for the treatment of alcohol use disorder in patients with alcohol withdrawal symptoms: a randomized clinical trial. JAMA Intern Med 180:728–736. https://doi.org/10.1001/jamainternmed.2020.0249

    Article  CAS  Google Scholar 

  9. Hadley SJ, Mandel FS, Schweizer E (2012) Switching from long-term benzodiazepine therapy to pregabalin in patients with generalized anxiety disorder: a double-blind, placebo-controlled trial. J Psychopharmacol 26:461–470. https://doi.org/10.1177/0269881111405360

    Article  CAS  Google Scholar 

  10. Mariani J. Gabapentin treatment of benzodiazepine dependence. ClinicalTrials.gov identifier: NCT01893632. Updated 24 April 2019. https://clinicaltrials.gov/ct2/show/results/NCT01893632

  11. Liu L et al (2020) The effects of benzodiazepine use and abuse on cognition in the elders: a systematic review and meta-analysis of comparative studies. Front Psychiatry. https://doi.org/10.3389/fpsyt.2020.00755

    Article  Google Scholar 

  12. Guina J, Merrill B (2018) Benzodiazepines I: upping the care on downers: the evidence of risks, benefits and alternatives. J Clin Med 7:17. https://doi.org/10.3390/jcm7020017

    Article  CAS  Google Scholar 

  13. Zhu S et al (2018) Structure of a human synaptic GABAA receptor. Nature 559:67–72. https://doi.org/10.1038/s41586-018-0255-3

    Article  CAS  Google Scholar 

  14. Stahl SM (2014) Stahl’s essential psychopharmacology. Cambridge University Press, Cambridge

    Google Scholar 

  15. Bianchi MT et al (2009) Benzodiazepine modulation of GABA(A) receptor opening frequency depends on activation context: a patch clamp and simulation study. Epilepsy Res 85:212–220. https://doi.org/10.1016/j.eplepsyres.2009.03.007

    Article  CAS  Google Scholar 

  16. Griffin CE et al (2013) Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J 13:214–223

    Google Scholar 

  17. Rudolph U, Knoflach F (2011) Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nat Rev Drug Discov 10:685–697. https://doi.org/10.1038/nrd3502

    Article  CAS  Google Scholar 

  18. Lee V, Maguire J (2014) The impact of tonic GABAA receptor-mediated inhibition on neuronal excitability varies across brain region and cell type. Front Neural Circuits 8:3. https://doi.org/10.3389/fncir.2014.00003

    Article  CAS  Google Scholar 

  19. Tobler I, Kopp C, Deboer T, Rudolph U (2001) DZP-induced changes in sleep: role of the alpha 1 GABA(A) receptor subtype. Proc Natl Acad Sci USA 98:6464–6469. https://doi.org/10.1073/pnas.111055398

    Article  CAS  Google Scholar 

  20. Rudolph U et al (1999) Benzodiazepine actions mediated by specific gamma-aminobutyric acid(A) receptor subtypes. Nature 401:796–800. https://doi.org/10.1038/44579

    Article  CAS  Google Scholar 

  21. McKernan RM et al (2000) Sedative but not anxiolytic properties of benzodiazepines are mediated by the GABA(A) receptor alpha1 subtype. Nat Neurosci 3:587–592. https://doi.org/10.1038/75761

    Article  CAS  Google Scholar 

  22. van Rijnsoever C et al (2004) Requirement of alpha5-GABAA receptors for the development of tolerance to the sedative action of DZP in mice. J Neurosci 24:6785–6790. https://doi.org/10.1523/JNEUROSCI.1067-04.2004

    Article  CAS  Google Scholar 

  23. Sieghart W, Sperk G (2002) Subunit composition, distribution and function of GABA(A) receptor subtypes. Curr Top Med Chem 2:795–816. https://doi.org/10.2174/1568026023393507

    Article  CAS  Google Scholar 

  24. Dixon CI, Rosahl TW, Stephens DN (2008) Targeted deletion of the GABRA2 gene encoding alpha2-subunits of GABA(A) receptors facilitates performance of a conditioned emotional response, and abolishes anxiolytic effects of benzodiazepines and barbiturates. Pharmacol Biochem Behav 90:1–8. https://doi.org/10.1016/j.pbb.2008.01.015

    Article  CAS  Google Scholar 

  25. Morris HV, Dawson GR, Reynolds DS, Atack JR, Stephens DN (2006) Both alpha2 and alpha3 GABAA receptor subtypes mediate the anxiolytic properties of benzodiazepine site ligands in the conditioned emotional response paradigm. Eur J Neurosci 23:2495–2504. https://doi.org/10.1111/j.1460-9568.2006.04775.x

    Article  CAS  Google Scholar 

  26. Löw K et al (2000) Molecular and neuronal substrate for the selective attenuation of anxiety. Science 290:131–134. https://doi.org/10.1126/science.290.5489.131

    Article  Google Scholar 

  27. Crestani F et al (2001) Molecular targets for the myorelaxant action of diazepam. Mol Pharmacol 59:442–445. https://doi.org/10.1124/mol.59.3.442

    Article  CAS  Google Scholar 

  28. Wisden W, Laurie DJ, Monyer H, Seeburg PH (1992) The distribution of 13 GABAA receptor subunit mRNAs in the rat brain. I. Telencephalon, diencephalon, mesencephalon. J Neurosci 12:1040–1062. https://doi.org/10.1523/JNEUROSCI.12-03-01040.1992

    Article  CAS  Google Scholar 

  29. Zhang JH, Sato M, Araki T, Tohyama M (1992) Postnatal ontogenesis of neurons containing GABAA alpha 1 subunit mRNA in the rat forebrain. Brain Res Mol Brain Res 16:193–203. https://doi.org/10.1016/0169-328x(92)90225-z

    Article  CAS  Google Scholar 

  30. Atack JR et al (2005) Anxiogenic properties of an inverse agonist selective for alpha3 subunit-containing GABAA receptors. Br J Pharmacol 144:357–366. https://doi.org/10.1038/sj.bjp.0706056

    Article  CAS  Google Scholar 

  31. Navarro JF, Burón E, Martín-López M (2006) Anxiolytic-like activity of SB-205384 in the elevated plus-maze test in mice. Psicothema 18:100–104

    Google Scholar 

  32. Dawson GR et al (2006) An inverse agonist selective for alpha5 subunit-containing GABAA receptors enhances cognition. J Pharmacol Exp Ther 316:1335–1345. https://doi.org/10.1124/jpet.105.092320

    Article  CAS  Google Scholar 

  33. Milić M et al (2012) The role of α1 and α5 subunit-containing GABAA receptors in motor impairment induced by benzodiazepines in rats. Behav Pharmacol 23:191–197. https://doi.org/10.1097/FBP.0b013e3283512c85

    Article  CAS  Google Scholar 

  34. Greenblatt DJ, Wright CE (1993) Clinical pharmacokinetics of alprazolam. Therapeutic implications. Clin Pharmacokinet 24:453–471. https://doi.org/10.2165/00003088-199324060-00003

    Article  CAS  Google Scholar 

  35. Basit H, Kahwaji CI (2022) Clonazepam. In: StatPearls. StatPearls Publishing, Treasure Island

  36. Waller DG, Sampson AP (2018) Anxiety, obsessive–compulsive disorder and insomnia. In: Medical pharmacology and therapeutics, 5th edn. pp 282–283. https://doi.org/10.1016/B978-0-7020-7167-6.00020-8

  37. Erman MK et al (2001) Comparative efficacy of zolpidem and temazepam in transient insomnia. Hum Psychopharmacol 16:169–176. https://doi.org/10.1002/hup.238

    Article  CAS  Google Scholar 

  38. Vyklicky V et al (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63:S191–S203. https://doi.org/10.33549/physiolres.932678

    Article  CAS  Google Scholar 

  39. Mattson MP (2008) Glutamate and neurotrophic factors in neuronal plasticity and disease. Ann N Y Acad Sci 1144:97–112. https://doi.org/10.1196/annals.1418.005

    Article  CAS  Google Scholar 

  40. Man HY (2011) GluA2-lacking, calcium-permeable AMPA receptors—inducers of plasticity? Curr Opin Neurobiol 21:291–298. https://doi.org/10.1016/j.conb.2011.01.001

    Article  CAS  Google Scholar 

  41. Edinoff AN et al (2021) Benzodiazepines: uses, dangers, and clinical considerations. Neurol Int 13:594–607. https://doi.org/10.3390/neurolint13040059

    Article  Google Scholar 

  42. Vinkers CH, Olivier B (2012) Mechanisms underlying tolerance after long-term benzodiazepine use: a future for subtype-selective GABA(A) receptor modulators? Adv Pharmacol Sci. https://doi.org/10.1155/2012/416864

    Article  Google Scholar 

  43. Hood SD, Norman A, Hince DA, Melichar JK, Hulse GK (2014) Benzodiazepine dependence and its treatment with low dose flumazenil. Br J Clin Pharmacol 77:285–294. https://doi.org/10.1111/bcp.12023

    Article  CAS  Google Scholar 

  44. Klein RL, Whiting PJ, Harris RA (1994) Benzodiazepine treatment causes uncoupling of recombinant GABAA receptors expressed in stably transfected cells. J Neurochem 63:2349–2352. https://doi.org/10.1046/j.1471-4159.1994.63062349.x

    Article  CAS  Google Scholar 

  45. Ali NJ, Olsen RW (2001) Chronic benzodiazepine treatment of cells expressing recombinant GABA(A) receptors uncouples allosteric binding: studies on possible mechanisms. J Neurochem 79:1100–1108. https://doi.org/10.1046/j.1471-4159.2001.00664.x

    Article  CAS  Google Scholar 

  46. Foitzick MF, Medina NB, Iglesias García LC, Gravielle MC (2020) Benzodiazepine exposure induces transcriptional down-regulation of GABAA receptor α1 subunit gene via L-type voltage-gated calcium channel activation in rat cerebrocortical neurons. Neurosci Lett 721:134801. https://doi.org/10.1016/j.neulet.2020.134801

    Article  CAS  Google Scholar 

  47. Nicholson MW et al (2018) Diazepam-induced loss of inhibitory synapses mediated by PLCδ/Ca2+/calcineurin signalling downstream of GABAA receptors. Mol Psychiatry 23:1851–1867. https://doi.org/10.1038/s41380-018-0100-y

    Article  CAS  Google Scholar 

  48. Jacob TC et al (2012) Benzodiazepine treatment induces subtype-specific changes in GABA(A) receptor trafficking and decreases synaptic inhibition. Proc Natl Acad Sci USA 109:18595–18600. https://doi.org/10.1073/pnas.1204994109

    Article  Google Scholar 

  49. Auta J, Gatta E, Davis JM, Pandey SC, Guidotti A (2018) Potential role for histone deacetylation in chronic diazepam-induced downregulation of α1-GABAA receptor subunit expression. Pharmacol Res Perspect. https://doi.org/10.1002/prp2.416

    Article  Google Scholar 

  50. Andrews N, File SE (1993) Increased 5-HT release mediates the anxiogenic response during benzodiazepine withdrawal: a review of supporting neurochemical and behavioural evidence. Psychopharmacology 112:21–25. https://doi.org/10.1007/BF02247359

    Article  CAS  Google Scholar 

  51. Gupta MB, Nath C, Patnaik GK, Saxena RC (1996) Effect of calcium channel blockers on withdrawal syndrome of lorazepam in rats. Indian J Med Res 103:310–314

    CAS  Google Scholar 

  52. Benini A et al (2021) Continuous infusion of flumazenil in the management of benzodiazepines detoxification. Front Psychiatry 12:646038. https://doi.org/10.3389/fpsyt.2021.646038

    Article  Google Scholar 

  53. Van Sickle BJ, Xiang K, Tietz EI (2004) Transient plasticity of hippocampal CA1 neuron glutamate receptors contributes to benzodiazepine withdrawal-anxiety. Neuropsychopharmacology 29:1994–2006. https://doi.org/10.1038/sj.npp.1300531

    Article  CAS  Google Scholar 

  54. Xiang K, Tietz EI (2007) Benzodiazepine-induced hippocampal CA1 neuron alpha-amino-3-hydroxy-5-methylisoxasole-4-propionic acid (AMPA) receptor plasticity linked to severity of withdrawal anxiety: differential role of voltage-gated calcium channels and N-methyl-d-aspartic acid receptors. Behav Pharmacol 18:447–460. https://doi.org/10.1097/FBP.0b013e3282d28f2b

    Article  CAS  Google Scholar 

  55. Talarek S, Listos J, Orzelska-Gorka J, Serefko A, Kotlińska J (2018) NMDA receptors and no:cgmp signaling pathway mediate the DZP-induced sensitization to withdrawal signs in mice. Neurotox Res 33:422–432. https://doi.org/10.1007/s12640-017-9810-1

    Article  CAS  Google Scholar 

  56. Rafi H, Rafiq H, Farhan M (2021) Inhibition of NMDA receptors by agmatine is followed by GABA/glutamate balance in benzodiazepine withdrawal syndrome. Beni-Suef Univ J Basic Appl Sci. https://doi.org/10.1186/s43088-021-00125-8

    Article  Google Scholar 

  57. Koff JM, Pritchard GA, Greenblatt DJ, Miller LG (1997) The NMDA receptor competitive antagonist CPP modulates benzodiazepine tolerance and discontinuation. Pharmacology 55:217–227. https://doi.org/10.1159/000139531

    Article  CAS  Google Scholar 

  58. Allison C, Pratt JA (2006) Differential effects of two chronic diazepam treatment regimes on withdrawal anxiety and AMPA receptor characteristics. Neuropsychopharmacology 31:602–619. https://doi.org/10.1038/sj.npp.1300800

    Article  CAS  Google Scholar 

  59. Das P et al (2008) Increased AMPA receptor GluR1 subunit incorporation in rat hippocampal CA1 synapses during benzodiazepine withdrawal. J Comp Neurol 511:832–846. https://doi.org/10.1002/cne.21866

    Article  CAS  Google Scholar 

  60. Chen EY et al (2021) Microgabalin as a novel gabapentinoid for the treatment of chronic pain conditions: an analysis of current evidence. Anesthesiol Pain Med 11:e121402. https://doi.org/10.5812/aapm.121402

    Article  Google Scholar 

  61. Classification of Phenibut. Phenibut data sheet. January 2018. https://www.medsafe.govt.nz/profs/class/Agendas/Agen60/5.5.1-Phenibut-submission.pdf

  62. Bockbrader HN et al (2010) A comparison of the pharmacokinetics and pharmacodynamics of pregabalin and gabapentin. Clin Pharmacokinet 49:661–669. https://doi.org/10.2165/11536200-000000000-00000

    Article  CAS  Google Scholar 

  63. Bockbrader HN et al (2010) Clinical pharmacokinetics of pregabalin in healthy volunteers. J Clin Pharmacol 50:941–950. https://doi.org/10.1177/0091270009352087

    Article  CAS  Google Scholar 

  64. Dickens D et al (2013) Transport of gabapentin by LAT1 (SLC7A5). Biochem Pharmacol 85:1672–1683. https://doi.org/10.1016/j.bcp.2013.03.022

    Article  CAS  Google Scholar 

  65. Takahashi Y et al (2018) Transport of pregabalin via L-type amino acid transporter 1 (SLC7A5) in human brain capillary endothelial cell line. Pharm Res 35:246. https://doi.org/10.1007/s11095-018-2532-0

    Article  CAS  Google Scholar 

  66. Dolphin AC (2006) A short history of voltage-gated calcium channels. Br J Pharmacol. https://doi.org/10.1038/sj.bjp.0706442

    Article  Google Scholar 

  67. Dolphin AC (2016) Voltage-gated calcium channels and their auxiliary subunits: physiology and pathophysiology and pharmacology. J Physiol 594:5369–5390. https://doi.org/10.1113/JP272262

    Article  CAS  Google Scholar 

  68. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3:a003947. https://doi.org/10.1101/cshperspect.a003947

    Article  CAS  Google Scholar 

  69. Dolphin AC (2018) Voltage-gated calcium channel α2δ subunits: an assessment of proposed novel roles. F1000Research. https://doi.org/10.12688/f1000research.16104.1

    Article  Google Scholar 

  70. Patel R, Dickenson AH (2016) Mechanisms of the gabapentinoids and α2 δ-1 calcium channel subunit in neuropathic pain. Pharmacol Res Perspect 4:e00205. https://doi.org/10.1002/prp2.205

    Article  CAS  Google Scholar 

  71. Hobom M et al (2000) Neuronal distribution and functional characterization of the calcium channel alpha2delta-2 subunit. Eur J Neurosci 12:1217–1226. https://doi.org/10.1046/j.1460-9568.2000.01009.x

    Article  CAS  Google Scholar 

  72. Zhou C, Luo ZD (2014) Electrophysiological characterization of spinal neuron sensitization by elevated calcium channel alpha-2-delta-1 subunit protein. Eur J Pain 18:649–658. https://doi.org/10.1002/j.1532-2149.2013.00416.x

    Article  CAS  Google Scholar 

  73. Ryu JH, Lee PB, Kim JH, Do SH, Kim CS (2012) Effects of pregabalin on the activity of glutamate transporter type 3. Br J Anesth 109:234–239. https://doi.org/10.1093/bja/aes120

    Article  CAS  Google Scholar 

  74. Tran-Van-Minh A, Dolphin AC (2010) The alpha2delta ligand gabapentin inhibits the Rab11-dependent recycling of the calcium channel subunit alpha2delta-2. J Neurosci 30:12856–12867. https://doi.org/10.1523/JNEUROSCI.2700-10.2010

    Article  CAS  Google Scholar 

  75. Bauer CS et al (2009) The increased trafficking of the calcium channel subunit alpha2delta-1 to presynaptic terminals in neuropathic pain is inhibited by the alpha2delta ligand pregabalin. J Neurosci 29:4076–4088. https://doi.org/10.1523/JNEUROSCI.0356-09.2009

    Article  CAS  Google Scholar 

  76. Hendrich J et al (2008) Pharmacological disruption of calcium channel trafficking by the alpha2delta ligand gabapentin. Proc Natl Acad Sci USA 105:3628–3633. https://doi.org/10.1073/pnas.0708930105

    Article  Google Scholar 

  77. Stefani A, Spadoni F, Bernardi G (1998) Gabapentin inhibits calcium currents in isolated rat brain neurons. Neuropharmacology 37:83–91. https://doi.org/10.1016/s0028-3908(97)00189-5

    Article  CAS  Google Scholar 

  78. Dolphin AC, Lee A (2020) Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 21:213–229. https://doi.org/10.1038/s41583-020-0278-2

    Article  CAS  Google Scholar 

  79. Cunningham MO, Woodhall GL, Thompson SE, Dooley DJ, Jones RS (2004) Dual effects of gabapentin and pregabalin on glutamate release at rat entorhinal synapses in vitro. Eur J Neurosci 20:1566–1576. https://doi.org/10.1111/j.1460-9568.2004.03625.x

    Article  Google Scholar 

  80. Errante LD, Petroff OA (2003) Acute effects of gabapentin and pregabalin on rat forebrain cellular GABA, glutamate, and glutamine concentrations. Seizure 12:300–306. https://doi.org/10.1016/s1059-1311(02)00295-9

    Article  Google Scholar 

  81. Gazulla J, Tintoré MA (2007) The P/Q-type voltage-dependent calcium channel as pharmacological target in spinocerebellar ataxia type 6: gabapentin and pregabalin may be of therapeutic benefit. Med Hypotheses 68:131–136. https://doi.org/10.1016/j.mehy.2006.06.014

    Article  CAS  Google Scholar 

  82. Bayer K, Ahmadi S, Zeilhofer HU (2004) Gabapentin may inhibit synaptic transmission in the mouse spinal cord dorsal horn through a preferential block of P/Q-type Ca2+ channels. Neuropharmacology 46:743–749. https://doi.org/10.1016/j.neuropharm.2003.11.010

    Article  CAS  Google Scholar 

  83. Fink K, Meder W, Dooley DJ, Göthert M (2000) Inhibition of neuronal Ca(2+) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices. Br J Pharmacol 130:900–906. https://doi.org/10.1038/sj.bjp.0703380

    Article  CAS  Google Scholar 

  84. Brown JT, Randall A (2005) Gabapentin fails to alter P/Q-type Ca2+ channel-mediated synaptic transmission in the hippocampus in vitro. Synapse 55:262–269. https://doi.org/10.1002/syn.20115

    Article  CAS  Google Scholar 

  85. Quintero JE, Dooley DJ, Pomerleau F, Huettl P, Gerhardt GA (2011) Amperometric measurement of glutamate release modulation by gabapentin and pregabalin in rat neocortical slices: role of voltage-sensitive Ca2+ α2δ-1 subunit. J Pharmacol Exp Ther 338:240–245. https://doi.org/10.1124/jpet.110.178384

    Article  CAS  Google Scholar 

  86. Meyerhoff DJ, Murray DE, Durazzo TC, Pennington DL (2018) Brain GABA and glutamate concentrations following chronic gabapentin administration: a convenience sample studied during early abstinence from alcohol. Front Psychiatry 9:78. https://doi.org/10.3389/fpsyt.2018.00078

    Article  Google Scholar 

  87. Haefely W (1988) Endogenous ligands of the benzodiazepine receptor. Pharmacopsychiatry 21:43–46. https://doi.org/10.1055/s-2007-1014645

    Article  CAS  Google Scholar 

  88. Tonon MC et al (2020) Endozepines and their receptors: structure, functions and pathophysiological significance. Pharmacol Ther 208:107386. https://doi.org/10.1016/j.pharmthera.2019.06.008

    Article  CAS  Google Scholar 

  89. Farzampour Z, Reimer RJ, Huguenard J (2015) Endozepines. Adv Pharmacol 72:147–164. https://doi.org/10.1016/bs.apha.2014.10.005

    Article  CAS  Google Scholar 

  90. Zhao Q, Chen XY, Martin C (2016) Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull 61:1391–1398. https://doi.org/10.1007/s11434-016-1136-5

    Article  CAS  Google Scholar 

  91. Wasowski C, Marder M (2012) Flavonoids as GABAA receptor ligands: the whole story. J Exp Pharmacol 4:9–24. https://doi.org/10.2147/JEP.S23105

    Article  Google Scholar 

  92. Sowndhararajan K, Deepa P, Kim M, Park SJ, Kim S (2018) Neuroprotective and cognitive enhancement potentials of baicalin: a review. Brain Sci 8:104. https://doi.org/10.3390/brainsci8060104

    Article  CAS  Google Scholar 

  93. Kim HJ, La JH, Kim HM, Yang IS, Sung TS (2019) Anti-diarrheal effect of Scutellaria baicalensis is associated with suppression of smooth muscle in the rat colon. Exp Ther Med 17:4748–4756. https://doi.org/10.3892/etm.2019.7469

    Article  CAS  Google Scholar 

  94. Choi BY et al (2017) Anti-cancer effect of Scutellaria baicalensis in combination with cisplatin in human ovarian cancer cell. BMC Complement Altern Med 17:277. https://doi.org/10.1186/s12906-017-1776-2

    Article  CAS  Google Scholar 

  95. Hui KM, Wang XH, Xue H (2000) Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med 66:91–93. https://doi.org/10.1055/s-0029-1243121

    Article  CAS  Google Scholar 

  96. Hui KM et al (2002) Anxiolytic effect of wogonin, a benzodiazepine receptor ligand isolated from Scutellaria baicalensis Georgi. Biochem Pharmacol 64:1415–1424. https://doi.org/10.1016/s0006-2952(02)01347-3

    Article  CAS  Google Scholar 

  97. Yang J, Wu X, Yu H, Liao X, Teng L (2014) NMDA receptor-mediated neuroprotective effect of the Scutellaria baicalensis Georgi extract on the excitotoxic neuronal cell death in primary rat cortical cell cultures. Sci World J 2014:459549. https://doi.org/10.1155/2014/459549

    Article  CAS  Google Scholar 

  98. Engin E, Liu J, Rudolph U (2012) α2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol Ther 136:142–152. https://doi.org/10.1016/j.pharmthera.2012.08.006

    Article  CAS  Google Scholar 

  99. Mathiasen L, Mirza NR (2005) A comparison of chlordiazepoxide, bretazenil, L838,417 and zolpidem in a validated mouse Vogel conflict test. Psychopharmacology 182:475–484. https://doi.org/10.1007/s00213-005-0119-z

    Article  CAS  Google Scholar 

  100. Gong Z, Xiong YC (2011) Effect of L-838,417 on pain behavior in a rat model of trigeminal neuralgia. J South Med Univ 31:890–893

    CAS  Google Scholar 

  101. Neznamov GG, Siuniakov SA, Chumakov DV, Bochkarev VK, Seredenin SB (2001) Clinical study of the selective anxiolytic agent afobazol. Eksperimental’naia i klinicheskaia farmakologiia [Russian] 64:15–19

    CAS  Google Scholar 

  102. Seredenin SB, Antipova TA, Voronin MV, Kurchashova SY, Kuimov AN (2009) Interaction of afobazole with sigma1-receptors. Bull Exp Biol Med 148:42–44. https://doi.org/10.1007/s10517-009-0624-x

    Article  CAS  Google Scholar 

  103. Voronin MV et al (2021) Involvement of chaperone Sigma1R in the anxiolytic effect of fabomotizole. Int J Mol Sci 22:5455. https://doi.org/10.3390/ijms22115455

    Article  CAS  Google Scholar 

  104. Kryzhanovskii SA et al (2021) On the mechanism of cardioprotective effect of fabomotizole in alcoholic cardiomyopathy. Bull Exp Biol Med 171:41–44. https://doi.org/10.1007/s10517-021-05168-6

    Article  CAS  Google Scholar 

  105. Tsorin IB, Barchukov VV, Vititnova MB, Kryzhanovskii SA, Seredenin SB (2019) Anti-ischemic activity of fabomotizole hydrochloride under conditions of endothelial dysfunction. Bull Exp Biol Med 167:634–636. https://doi.org/10.1007/s10517-019-04586-x

    Article  CAS  Google Scholar 

  106. Antipova TA, Sapozhnikova DS, Bakhtina L, Seredenin SB (2009) Selective anxiolytic afobazole increases the content of BDNF and NGF in cultured hippocampal HT-22 line neurons. Eksperimental’naia i klinicheskaia farmakologiia [Russian] 72:12–14

    CAS  Google Scholar 

  107. Kolik LG et al (2014) Assessment of afobazole effects on DZP withdrawal-induced anxiety in rats. Eksperimental’naia i klinicheskaia farmakologiia [Russian] 77:6–9

    CAS  Google Scholar 

  108. Syunyakov TS, Neznamov GG (2016) Evaluation of the therapeutic efficacy and safety of the selective anxiolytic afobazole in generalized anxiety disorder and adjustment disorders: results of a multicenter randomized comparative study of DZP. Terapevticheskii arkhiv [Russian] 88:73–86. https://doi.org/10.17116/terarkh201688873-86

    Article  CAS  Google Scholar 

  109. Reutova MA, Siuniakov SA, Siuniakov TS, Neznamov GG (2010) Anxiolytic afobazole action self-evaluated by patients with anxiety-asthenic disorders. Eksperimental’naia i klinicheskaia farmakologiia [Russian] 73:6–12

    CAS  Google Scholar 

  110. Schmitz A (2016) Benzodiazepine use, misuse, and abuse: a review. Ment Health Clin 6:120–126. https://doi.org/10.9740/mhc.2016.05.120

    Article  Google Scholar 

  111. Althobaiti YS et al (2020) Gabapentin-induced drug-seeking-like behavior: a potential role for the dopaminergic system. Sci Rep 10:10445. https://doi.org/10.1038/s41598-020-67318-6

    Article  CAS  Google Scholar 

  112. Smith RV, Havens JR, Walsh SL (2016) Gabapentin misuse, abuse and diversion: a systematic review. Addiction 111:1160–1174. https://doi.org/10.1111/add.13324

    Article  Google Scholar 

  113. Smith RV, Lofwall MR, Havens JR (2015) Abuse and diversion of gabapentin among nonmedical prescription opioid users in Appalachian, Kentucky. Am J Psychiatry 172:487–488. https://doi.org/10.1176/appi.ajp.2014.14101272

    Article  Google Scholar 

  114. Hägg S, Jönsson AK, Ahlner J (2020) Current evidence on abuse and misuse of gabapentinoids. Drug Saf 43:1235–1254. https://doi.org/10.1007/s40264-020-00985-6

    Article  Google Scholar 

  115. Rowlett JK et al (2005) Different GABAA receptor subtypes mediate the anxiolytic, abuse-related, and motor effects of benzodiazepine-like drugs in primates. Proc Natl Acad Sci USA 102:915–920. https://doi.org/10.1073/pnas.0405621102

    Article  CAS  Google Scholar 

  116. Levine AR et al (2019) High-dose gabapentin for the treatment of severe alcohol withdrawal syndrome: a retrospective cohort analysis. Pharmacotherapy 39:881–888. https://doi.org/10.1002/phar.2309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Editage (www.editage.com) for English language editing.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

HWIV developed the entire manuscript, formulated the hypotheses and figures, and performed the literature search/data analysis. LL helped revise the manuscript and assisted with rewriting the content relevant to the manuscript. RP assisted with writing the original manuscript and reference compilation with EndNote. SF and RK assisted with creating tables and incorporating content into the manuscript. EJ helped with manuscript editing. AL assisted with drafting the original version of the manuscript, as well as scheduling editing meetings. HN assisted with manuscript editing. JR assisted with revising the manuscript and critically analyzing several manuscript drafts.

Corresponding author

Correspondence to Halford Warlick IV.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Research involving human and/or animal participants

This article does not contain any studies, including human participants or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warlick, H., Leon, L., Patel, R. et al. Application of gabapentinoids and novel compounds for the treatment of benzodiazepine dependence: the glutamatergic model. Mol Biol Rep 50, 1765–1784 (2023). https://doi.org/10.1007/s11033-022-08110-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08110-9

Keywords

Navigation