Skip to main content
Log in

The mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus (Hexacorallia; Scleractinia): new insights on the phylogeny of the family Caryophylliidae

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Caryophylliidae is one of the most diverse scleractinian families, however it was recovered as polyphyletic in multiple molecular studies. Recently, the mitochondrial gene order was proposed as a character for a taxonomic revision of the family. Here we describe the first mitogenome of the caryophylliid genus Crispatotrochus, whose phylogenetic position remains uncertain.

Methods and results

The complete mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus were sequenced, assembled, and annotated. The two mitogenomes are identical and circular, have a length of 16,536 bp, a GC content of 35.9%, and contain 13 protein-coding genes, 2 ribosomal RNAs and 2 transfer RNAs. Both species have a transposition of a three gene block - cob, nad2, and nad6 - similarly to a group of caryophylliid genera that were recovered as monophyletic, including the type genus (Caryophyllia) of the family. The phylogenetic analyses recovered Crispatotrochus within the clade that presents the gene rearrangement and specifically as sister taxa of the genus Caryophyllia, a result consistent with previous studies and the similar gross morphology of the two genera.

Conclusions

We determined the mitochondrial genomes of the genus Crispatotrochus to investigate their relations within Scleractinia. Results from this study provide insights on the phylogenetic position of the genus and corroborate that the mitochondrial gene order could be used as taxonomic character for the family Caryophylliidae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Kitahara MV, Fukami H, Benzoni F, Huang D (2016) The new systematics of Scleractinia: Integrating molecular and morphological evidence. In: Goffredo S, Dubinsky Z (eds) The Cnidaria, past, present and future. Springer International Publishing, Switzerland, pp 41–59

    Chapter  Google Scholar 

  2. Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642. https://doi.org/10.1126/science.271.5249.640

    Article  CAS  Google Scholar 

  3. Fukami H, Chen CA, Budd AF, Collins A, Wallace C, Chuang YY, Chen C, Dai CF, Iwao K, Sheppard C, Knowlton N (2008) Mitochondrial and nuclear genes suggest that stony corals are monophyletic but most families of stony corals are not (Order Scleractinia, Class Anthozoa, Phylum Cnidaria). PLoS ONE 3(9):e3222. https://doi.org/10.1371/journal.pone.0003222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Quattrini AM, Rodríguez E, Faircloth BC, Cowman PF, Brugler MR, Farfan GA, Hellberg ME, Kitahara MV, Morrison CL, Paz-García DA, Reimer JD, McFadden CS (2020) Palaeoclimate ocean conditions shaped the evolution of corals and their skeletons through deep time. Nat Ecol Evol 4:1531–1538. https://doi.org/10.1038/s41559-020-01291-1

    Article  PubMed  Google Scholar 

  5. Stolarski J, Kitahara MV, Miller DJ, Cairns SD, Mazur M, Meibom A (2011) The ancient evolutionary origins of Scleractinia revealed by azooxanthellate corals. BMC Evol Biol 11:2–15. https://doi.org/10.1186/1471-2148-11-316

    Article  Google Scholar 

  6. Seiblitz IGL, Vaga CF, Capel KCC, Cairns SD, Stolarski J, Quattrini AM, Kitahara MV (2022) Caryophylliids (Anthozoa, Scleractinia) and mitochondrial gene order: Insights from mitochondrial and nuclear phylogenomics. Mol Phylogenet Evol 175:107565. https://doi.org/10.1016/j.ympev.2022.107565

    Article  CAS  PubMed  Google Scholar 

  7. Roberts JM, Wheeler AJ, Freiwald A, Cairns SD (2009) Cold-water corals: the biology and geology of deep-sea coral habitats. Cambridge University Press, Cambridge, 334 pp. https://doi.org/10.1017/CBO9780511581588.

  8. Emblem Å, Karlsen BO, Evertsen J, Johansen SD (2011) Mitogenome rearrangement in the cold-water scleractinian coral Lophelia pertusa (Cnidaria, Anthozoa) involves a long-term evolving group I intron. Mol Phylogenet Evol 61(2):495–503. https://doi.org/10.1016/j.ympev.2011.07.012

    Article  PubMed  Google Scholar 

  9. Flot JF, Dahl M, Andre C (2013) Lophelia pertusa corals from the Ionian and Barents seas share identical nuclear ITS2 and near-identical mitochondrial genome sequences. BMC Res Notes 6:144. https://doi.org/10.1186/1756-0500-6-144

    Article  PubMed  PubMed Central  Google Scholar 

  10. Zeng C, Tracey DM, Clark MR, Rowden AA, Thomas LJ, Gardner JPA (2016) The complete mitochondrial genome of the deep-sea stony coral Solenosmilia variabilis (Scleractinia, Caryophylliidae) and its inter-individual variation. Mitochondrial DNA a DNA Mapp Seq Ana 27:1959–1960. https://doi.org/10.3109/19401736.2014.971306

    Article  CAS  Google Scholar 

  11. Addamo AM, Vertino A, Stolarski J, García-Jiménez R, Taviani M, Machordom A (2016) Merging scleractinian genera: the overwhelming genetic similarity between solitary Desmophyllum and colonial Lophelia. BMC Evol Biol 16(1):1–17. https://doi.org/10.1186/s12862-016-0654-8

    Article  CAS  Google Scholar 

  12. Romano SL, Cairns SD (2000) Molecular phylogenetic hypotheses for the evolution of scleractinian corals. Bull Mar Sci 67:1043–1068

    Google Scholar 

  13. Barbeitos MS, Romano SL, Lasker HR (2010) Repeated loss of coloniality and symbiosis in scleractinian corals. Proc Natl Acad Sci 107:11877–11882. https://doi.org/10.1073/pnas.0914380107

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120. https://doi.org/10.1093/bioinformatics/btu170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477. https://doi.org/10.1089/cmb.2012.0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF (2013) MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol 69(2):313–319. https://doi.org/10.1016/j.ympev.2012.08.023

    Article  PubMed  Google Scholar 

  17. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  18. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797. https://doi.org/10.1093/nar/gkh340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kitahara MV, Lin MF, Foret S, Huttley G, Miller DJ, Chen CA, Roberts JM (2014) The “Naked coral” hypothesis revisited: evidence for and against scleractinian monophyly. PLoS ONE 9(4):e94774. https://doi.org/10.1371/journal.pone.0094774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chuang Y, Kitahara MV, Fukami H, Tracey D, Miller DJ, Chen CA (2017) Loss and gain of group I introns in the mitochondrial cox1 gene of the Scleractinia (Cnidaria; Anthozoa). Zool Stud 56:9. https://doi.org/10.6620/ZS.2017.56-09

    Article  Google Scholar 

  22. Kitahara MV, Cairns SD (2021) Azooxanthellate Scleractinia (Cnidaria, Anthozoa) from New Caledonia. Mémoires du Muséum national d’Histoire naturelle 215:1–722

    Google Scholar 

  23. Shearer TL, Van Oppen MJH, Romano SL, Wörheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11(12):2475–2487. https://doi.org/10.1046/j.1365-294X.2002.01652.x

    Article  CAS  PubMed  Google Scholar 

  24. Kitahara MV, Cairns SD, Miller DJ (2010) Monophyletic origin of Caryophyllia (Scleractinia, Caryophylliidae), with descriptions of six new species. System Biodivers 8(1):91–118. https://doi.org/10.1080/14772000903571088

    Article  Google Scholar 

  25. Campoy AN, Addamo AM, Machordom A, Meade A, Rivadeneira MM, Hernandez CE, Venditti C (2020) The origin and correlated evolution of symbiosis and coloniality in scleractinian corals. Front Mar Sci 7:461. https://doi.org/10.3389/fmars.2020.00461

    Article  Google Scholar 

Download references

Acknowledgements

MVK thanks the support of FAPESP (Processes #2014/01332-0 and #2021/06866-6) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (301436/2018-5). The first author is supported by a PhD scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (142149/2018-7). We are also grateful to the four anonymous reviewers, whose helpful and positive feedback has been incorporated into a revised text. This paper is a contribution of NP-BioMar, USP.

Funding

This study was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (grants #2014/01332-0 and #2021/06866-6 to MVK) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant #301436/2018–5 to MVK and grant #142149/2018-7 to CVF).

Author information

Authors and Affiliations

Authors

Contributions

CFV and MVK conceived and designed research. CFV conducted experiments. CFV, IGLS, and KCCC analyzed data. All authors wrote and approved the manuscript.

Corresponding author

Correspondence to C. F. Vaga.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

All applicable international, national, and/or institutional guidelines for animal testing and use of animals were followed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaga, C.F., Seiblitz, I.G.L., Capel, K.C.C. et al. The mitochondrial genomes of Crispatotrochus rubescens and Crispatotrochus rugosus (Hexacorallia; Scleractinia): new insights on the phylogeny of the family Caryophylliidae. Mol Biol Rep 49, 12269–12273 (2022). https://doi.org/10.1007/s11033-022-08029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-08029-1

Keywords

Navigation