Skip to main content
Log in

General guidelines for CRISPR/Cas-based genome editing in plants

  • Review
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

CRISPR (clustered regularly interspaced short palindromic repeats)/Cas (CRISPR-associated) technology is a versatile genome editing tool that has been used to improve agriculturally important plant traits. Due to its precision, CRISPR/Cas9 is more effective than either conventional plant breeding methods or standard genetic engineering approaches for the rapid development of new varieties resilient to climate change. In addition to knowledge in tissue culture-based plant transformation, effective gene-specific single guide RNA (sgRNA) design, prediction of its off-target effect and utilization of vectors, promoters, Cas proteins and terminators is required for CRISPR/Cas9. Various bioinformatics tools are available for the best sgRNA design and screening of the off-targets. Various tools are used in the delivery of CRISPR/Cas components into cells and the genome. Moreover, some recent studies proved the simultaneous silencing of different paralogs in the same family or several genes working in the same pathway by using multiple-target sgRNA designs. This review summarizes the type of promoters, Cas proteins, recognition sequences, and terminators available for the development of knock-out and overexpression plant lines. It also provides a general guideline for the development of genome-edited plants from the design of sgRNAs to the selection of non-transgenic genome-edited T2 generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Doudna JA, Charpentier E (2014) The new frontier of genome engineering with CRISPR-Cas9. Science 346:6213. https://doi.org/10.1126/science.1258096

    Article  CAS  Google Scholar 

  2. Makarova KS, Wolf YI, Alkhnbashi OS et al (2015) An updated evolutionary classification of CRISPR–Cas systems. Nat Rev Microbiol 13:722–736. https://doi.org/10.1038/nrmicro3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang Y, Malzahn AA, Sretenovic S, Qi Y (2019) The emerging and uncultivated potential of CRISPR technology in plant science. Nat Plants 5:778–794. https://doi.org/10.1038/s41477-019-0461-5

    Article  PubMed  Google Scholar 

  4. Jiang F, Doudna JA (2015) The structural biology of CRISPR-Cas systems. Curr Opin Struct Biol 30:100–111. https://doi.org/10.1016/j.sbi.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Westra ER, van Erp PBG, Künne T (2012) CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3. Mol Cell 46:595–605. https://doi.org/10.1016/j.molcel.2012.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hale CR, Zhao P, Olson S (2009) RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956. https://doi.org/10.1016/j.cell.2009.07.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ishino Y, Krupovic M, Forterre P (2018) History of CRISPR-Cas from encounter with a mysterious repeated sequence to genome editing technology. J Bacteriol 200:e00580-e617. https://doi.org/10.1128/JB.00580-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zafar SA, Zaidi SSA, Gaba Y (2020) Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot 71:470–479. https://doi.org/10.1093/jxb/erz476

    Article  CAS  PubMed  Google Scholar 

  9. Hsu PD, Scott DA, Weinstein JA (2013) DNA targeting specificity of RNAguided Cas9 nucleases. Nat Biotechnol 31:827–832. https://doi.org/10.1038/nbt.2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stella S, Alcon P, Montoya G (2017) Class 2 CRISPR–Cas RNA-guided endonucleases: Swiss Army knives of genome editing. Nat Struct Mol Biol 24:882–892. https://doi.org/10.1038/nsmb.3486

    Article  CAS  PubMed  Google Scholar 

  11. Klompe SE, Vo PL, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571:219–225. https://doi.org/10.1038/s41586-019-1323-z

    Article  CAS  PubMed  Google Scholar 

  12. Niewoehner O, Garcia-Doval C, Rostøl JT (2017) Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers. Nature 548:543–548. https://doi.org/10.1038/nature23467

    Article  CAS  PubMed  Google Scholar 

  13. Makarova KS, Wolf YL, Iranzo J (2020) Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat Rev Microbiol 18:67–83. https://doi.org/10.1038/s41579-019-0299-x

    Article  CAS  PubMed  Google Scholar 

  14. Wada N, Osakabe K, Osakabe Y (2022) Expanding the plant genome editing toolbox with recently developed CRISPR-Cas systems. Plant Physiol 188:1825–1837. https://doi.org/10.1093/plphys/kiac027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Anzalone AV, Koblan LW, Liu DR (2020) Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol 38:824–844. https://doi.org/10.1038/s41587-020-0561-9

    Article  CAS  PubMed  Google Scholar 

  16. Kim H, Kim ST, Ryu J (2017) CRISPR/Cpf1-mediated DNA-free plant genome editing. Nat Commun 8:1–7. https://doi.org/10.1038/ncomms14406

    Article  CAS  Google Scholar 

  17. Elmore JR, Sheppard NF, Ramia N (2016) Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system. Genes Dev 30:447–459. https://doi.org/10.1101/gad.272153.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malzahn AA, Tang X, Lee K (2019) Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biol 17:1–14. https://doi.org/10.1186/s12915-019-0629-5

    Article  Google Scholar 

  19. Zhan X, Lu Y, Zhu JK, Botella JR (2020) Genome editing for plant research and crop improvement. J Integr Plant Biol 63:3–33. https://doi.org/10.1111/jipb.13063

    Article  CAS  Google Scholar 

  20. Abudayyeh OO, Gootenberg JS, Essletzbichler P (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284. https://doi.org/10.1038/nature24049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ali Z, Mahas A, Mahfouz M (2018) CRISPR/Cas13 as a tool for RNA interference. Trends Plant Sci 23:374–378. https://doi.org/10.1016/j.tplants.2018.03.003

    Article  CAS  PubMed  Google Scholar 

  22. Pandita D, Palakolanu PCOR, SR (2021) CRISPR/Cas13: a novel and emerging tool for RNA editing in plants. Tang G, Teotia S, Tang X, Singh D (eds) RNA-based technologies for functional genomics in plants. Springer, Cham, pp 301–337

    Google Scholar 

  23. Barrangou R, Fremaux C, Deveau H (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  24. Hassan MM, Zhang Y, Yuan G (2021) Construct design for CRISPR/Cas-based genome editing in plants. Trends Plant Sci 26(11):1133–1152. https://doi.org/10.1016/j.tplants.2021.06.015

    Article  CAS  PubMed  Google Scholar 

  25. Doench G, Hartenian E, Graham DB (2014) Rational design of highly active sgRNAs for CRISPR-Cas9- mediated gene inactivation. Nat Biotechnol 32:1262. https://doi.org/10.1038/nbt.3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doench JG, Fusi N, Sullender NM (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPRCas9. Nat Biotechnol 34:184. https://doi.org/10.1038/nbt.3437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu H, Xiao T, Chen C (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25:1147–1157. https://doi.org/10.1101/gr.191452.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Moreno-Mateos MA, Vejnar CE, Beaudoin JD (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12:982. https://doi.org/10.1038/nmeth.3543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stemmer M, Thumberger T, Del Sol KM (2015) CCTop: An intuitive, flexible and reliable CRISPR/Cas9 target prediction tool. PLoS ONE 24:e0124633. https://doi.org/10.1371/journal.pone.0124633

    Article  CAS  Google Scholar 

  30. Bae S, Kweon J, Kim HS, Kim JS (2014) Microhomology-based choice of Cas9 nuclease target sites. Nat Methods 11:705–706. https://doi.org/10.1038/nmeth.3015

    Article  CAS  PubMed  Google Scholar 

  31. Kuan PF, Powers S, He S (2017) A systematic evaluation of nucleotide properties for CRISPR sgRNA design. BMC Bioinform 18:297. https://doi.org/10.1186/s12859-017-1697-6

    Article  CAS  Google Scholar 

  32. Malina A, Cameron CJ, Robert F (2015) PAM multiplicity marks genomic target sites as inhibitory to CRISPR-Cas9 editing. Nat Commun 6:10124. https://doi.org/10.1038/ncomms10124

    Article  CAS  PubMed  Google Scholar 

  33. Graf R, Li X, Chu VT, Rajewsky K (2019) sgRNA sequence motifs blocking efficient CRISPR/Cas9-mediated gene editing. Cell Rep 26:1098-1103.e3. https://doi.org/10.1016/j.celrep.2019.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wong N, Liu W, Wang X (2015) WU-CRISPR: characteristics of functional guide RNAs for the CRISPR/ Cas9 system. Genome Biol 16:218. https://doi.org/10.1186/s13059-015-0784-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang G, Zhang H, Lou D, Yu D (2016) Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Sci Rep 6:1–8. https://doi.org/10.1038/srep21451

    Article  CAS  Google Scholar 

  36. Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6(5):902–904. https://doi.org/10.1021/acssynbio.6b00343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lin Y, Cradick TJ, Brown MT (2014) CRISPR/Cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res 42:7473–7485. https://doi.org/10.1093/nar/gku402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mendoza BJ, Trinh CT (2018) Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms. Bioinformatics 34:16–23. https://doi.org/10.1093/bioinformatics/btx564

    Article  CAS  PubMed  Google Scholar 

  39. Yue J, Hong C, Wei P (2020) How to start your monocot CRISPR/Cas project: plasmid design, efficiency detection, and offspring analysis. Rice 13:1–13. https://doi.org/10.1186/s12284-019-0354-2

    Article  Google Scholar 

  40. Miki D, Zhang W, Zeng W (2018) CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun 9:1967. https://doi.org/10.1038/s41467-018-04416-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Z, Mao Y, Ha S (2016) A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis. Plant Cell Rep 35:1519–1533. https://doi.org/10.1007/s00299-015-1900-z

    Article  CAS  PubMed  Google Scholar 

  42. Kurata M, Wolf NK, Lahr WS (2018) Highly multiplexed genome engineering using CRISPR/Cas9 gRNA arrays. PLoS ONE 13:e0198714. https://doi.org/10.1371/journal.pone.0198714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang H, Zhang J, Wei P (2014) The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation. Plant Biotechnol J 12:797–807. https://doi.org/10.1111/pbi.12200

    Article  CAS  PubMed  Google Scholar 

  44. Zhan X, Lu Y, Zhu JK, Botella JR (2021) Genome editing for plant research and crop improvement. J Integr Plant Biol 63:3–33. https://doi.org/10.1111/jipb.13063

    Article  CAS  PubMed  Google Scholar 

  45. Feng Z, Mao Y, Xu N (2014) Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci USA 111:4632–4637. https://doi.org/10.1073/pnas.1400822111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang Z, Xing H, Li D (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16:1–12. https://doi.org/10.1186/s13059-015-0715-0

    Article  CAS  Google Scholar 

  47. Mao Y, Zhang Z, Feng Z (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14:519–532. https://doi.org/10.1111/pbi.12468

    Article  CAS  PubMed  Google Scholar 

  48. Mao Y, Yang X, Zhou Y (2018) Manipulating plant RNA-silencing pathways to improve the gene editing efficiency of CRISPR/Cas9 systems. Genome Biol 19:1–15. https://doi.org/10.1186/s13059-018-1529-7

    Article  CAS  Google Scholar 

  49. Endo A, Masafumi M, Kaya H, Toki S (2016) Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida. Sci Rep 6:38169. https://doi.org/10.1038/srep38169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cermak T, Curtin SJ, Gil-Humanes J (2017) A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29:1196–1217. https://doi.org/10.1105/tpc.16.00922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tang X, Sretenovic S, Ren Q (2020) Plant prime editors enable precise gene editing in rice cells. Mol Plant 13:667–670. https://doi.org/10.1016/j.molp.2020.03.010

    Article  CAS  PubMed  Google Scholar 

  52. Hua K, Jiang Y, Tao X, Zhu JK (2020) Precision genome engineering in rice using prime editing system. Plant Biotechnol J 18:2167–2169. https://doi.org/10.1111/pbi.13395

    Article  PubMed  PubMed Central  Google Scholar 

  53. Cermak T, Baltes NJ, Cegan R (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16:232. https://doi.org/10.1186/s13059-015-0796-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Aman R, Ali Z, Butt H (2018) RNA virus interference via CRISPR/ Cas13a system in plants. Genome Biol 19:1–9. https://doi.org/10.1186/s13059-017-1381-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu Y, Tian Y, Shen R (2020) Targeted, efficient sequence insertion and replacement in rice. Nat Biotechnol 38:1402–1407. https://doi.org/10.1038/s41587-020-0581-5

    Article  CAS  PubMed  Google Scholar 

  56. Endo M, Mikami M, Toki S (2015) Multigene knockout utilizing off-target mutations of the CRISPR/Cas9 system in rice. Plant Cell Physiol 56:41–47. https://doi.org/10.1093/pcp/pcu154

    Article  CAS  PubMed  Google Scholar 

  57. Stevens R, Grelon M, Vezon D (2004) A CDC45 homolog in Arabidopsis is essential for meiosis, as shown by RNA interference einduced gene silencing. Plant Cell 16:99–113. https://doi.org/10.1105/tpc.016865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yan L, Wei S, Wu Y (2015) High efficiency genome editing in Arabidopsis using YAO promoter-driven CRISPR/Cas9 system. Mol Plant 8:1820–1823. https://doi.org/10.1016/j.molp.2015.10.004

    Article  CAS  PubMed  Google Scholar 

  59. Ordon J, Bressan M, Kretschmer C, Dall’Osto L, Marillonnet S, Bassi R, Stuttmann J (2020) Optimized Cas9 expression systems for highly efficient Arabidopsis genome editing facilitate isolation of complex alleles in a single generation. Funct Integr 20:151–162. https://doi.org/10.1007/s10142-019-00665-4

    Article  CAS  Google Scholar 

  60. Peng FN, Zhang WX, Zeng WJ, Zhu JK, Miki D (2020) Gene targeting in Arabidopsis via an all-in-one strategy that uses a translational enhancer to aid Cas9 expression. Plant Biotechnol J 18:892–894. https://doi.org/10.1111/pbi.13265

    Article  PubMed  Google Scholar 

  61. Johnson LM, Du J, Hale CJ (2014) SRA- and SET-domain-containing proteins link RNA polymerase V occupancy to DNA methylation. Nature 507:124–128. https://doi.org/10.1038/nature12931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Papikian A, Liu W, Gallego-Bartolome J, Jacobsen SE (2019) Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10:729. https://doi.org/10.1038/s41467-019-08736-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gallego-Bartolome J, Gardiner J, Liu W (2018) Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA 115:E2125–E2134. https://doi.org/10.1073/pnas.1716945115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ji L, Jordan WT, Shi X (2018) TET-mediated epimutagenesis of the Arabidopsis thaliana methylome. Nat Commun 9:895. https://doi.org/10.1038/s41467-018-03289-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang X, Ye L, Lyu M (2020) An inducible genome editing system for plants. Nat Plants 6:766–772. https://doi.org/10.1038/s41477-020-0695-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Decaestecker W, Buono RA, Pfeiffer ML (2019) CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in Arabidopsis. Plant Cell 31(12):2868–2887. https://doi.org/10.1105/tpc.19.00454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Vazquez-Vilar M, Garcia-Carpintero V, Selma (2021) The GB4.0 platform, an all-in-one tool for CRISPR/Cas-based multiplex genome engineering in plants. Front Plant Sci 12:689937. https://doi.org/10.3389/fpls.2021.689937

    Article  PubMed  PubMed Central  Google Scholar 

  68. Zhang D, Zhang Z, Zhang UT (2021) CRISPR/Cas: A powerful tool for gene function study and crop improvement. J Adv Res 29:207–221. https://doi.org/10.1016/j.jare.2020.10.003

    Article  CAS  PubMed  Google Scholar 

  69. Zhou H, Liu B, Weeks DP, Spalding MH, Yang B (2014) Large chromosomal deletions and heritable small genetic changes induced by CRISPR/Cas9 in rice. Nuc Acids Res 42:10903–10914. https://doi.org/10.1093/nar/gku806

    Article  CAS  Google Scholar 

  70. Saika H, Mori A, Endo M, Toki S (2019) Targeted deletion of rice retrotransposon Tos17 via CRISPR/Cas9. Plant Cell Rep 38:455–458. https://doi.org/10.1007/s00299-018-2357-7

    Article  CAS  PubMed  Google Scholar 

  71. Gao J, Wang G, Ma S (2015) CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol 87:99–110. https://doi.org/10.1007/s11103-014-0263-0

    Article  CAS  PubMed  Google Scholar 

  72. Xie K, Minkenberg B, Yang Y (2015) Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc Natl Acad Sci USA 112:3570–3575. https://doi.org/10.1073/pnas.1420294112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lowder LG, Zhang D, Baltes NJ (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169:971–985. https://doi.org/10.1104/pp.15.00636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cody WB, Scholthof HB, Mirkov TE (2017) Multiplexed gene editing and protein overexpression using a tobacco mosaic virus viral vector. Plant Physiol 17:23–35. https://doi.org/10.1104/pp.17.00411

    Article  CAS  Google Scholar 

  75. Miladinovic D, Antunes D, Yildirim K (2021) Targeted plant improvement through genome editing: from laboratory to field. Plant Cell Rep 40:935–951. https://doi.org/10.1007/s00299-020-02655-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Doll NM, Gilles LM, Gérentes MF (2019) Single and multiple gene knockouts by CRISPR-Cas9 in maize. Plant Cell Rep 38(2019):487–501. https://doi.org/10.1007/s00299-019-02378-1

    Article  CAS  PubMed  Google Scholar 

  77. Bollier N, Buono RA, Jacobs TB, Nowack MK (2020) Efficient simultaneous mutagenesis of multiple genes in specific plant tissues by multiplex CRISPR. Plant Biotech J 19:651–653. https://doi.org/10.1101/2020.11.13.381046

    Article  Google Scholar 

  78. Li R, Li R, Li X (2018) Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotech J 16:415–427. https://doi.org/10.1111/pbi.12781

    Article  CAS  Google Scholar 

  79. Li X, Wang Y, Chen S (2018) Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Front Plant Sci 9:559. https://doi.org/10.3389/fpls.2018.00559

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li Z, Cheng Q, Gan Z (2020) Multiplex CRISPR/Cas9-mediated knockout of soybean LNK2 advances flowering time. Crop J 9:767–776. https://doi.org/10.1016/j.cj.2020.09.005

    Article  Google Scholar 

  81. Reem NT, Van Eck J (2019) Application of CRISPR/Cas9-mediated gene editing in tomato. In: Qi Y (ed) Plant genome editing with CRISPR systems methods and protocols. Springer, Switzerland, pp 171–182

    Chapter  Google Scholar 

  82. Toda E, Koiso N, Takebayashi A (2019) An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice. Nat Plants 5:363–368. https://doi.org/10.1038/s41477-019-0386-z

    Article  CAS  PubMed  Google Scholar 

  83. Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. Genes Genom Genet 3:2233–2238. https://doi.org/10.1534/g3.113.008847

    Article  Google Scholar 

  84. Xing S, Jia M, Wei L (2018) CRISPR/Cas9-introduced single and multiple mutagenesis in strawberry. J Genet Genomics 45:685–687. https://doi.org/10.1016/j.jgg.2018.04.006

    Article  PubMed  Google Scholar 

  85. Raitskin O, Patron NJ (2016) Multi-gene engineering in plants with RNA-guided Cas9 nuclease. Curr Opin Biotechnol 37:69–75. https://doi.org/10.1016/j.copbio.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  86. Fan Y, Xin S, Dai X (2020) Efficient genome editing of rubber tree (Hevea brasiliensis) protoplasts using CRISPR/Cas9 ribonucleoproteins. Ind Crops Prod 146:112146. https://doi.org/10.1016/j.indcrop.2020.112146

    Article  CAS  Google Scholar 

  87. Woo JW, Kim J, Kwon SI (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat Biotechnol 33:1162–1164. https://doi.org/10.1038/nbt.3389

    Article  CAS  PubMed  Google Scholar 

  88. Andersson M, Turesson H, Olsson N (2018) Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery. Physiol Plant 164:378–384. https://doi.org/10.1111/ppl.12731

    Article  CAS  PubMed  Google Scholar 

  89. Chang KS, Kim J, Park H (2020) Enhanced lipid productivity in AGP knockout marine microalga Tetraselmis sp. using a DNA-free CRISPR-Cas9 RNP method. Bioresour Technol 303:122932. https://doi.org/10.1016/j.biortech.2020.122932

    Article  CAS  PubMed  Google Scholar 

  90. Sant’Ana R, Caprestano CA, Nodari RO, Agapito-Tenfen SZ (2020) PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts. Genes 11:1029. https://doi.org/10.3390/genes11091029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ghogare R, Ludwig Y, Bueno GM (2021) Genome editing reagent delivery in plants. Transgenic Res 30:321–335. https://doi.org/10.1007/s11248-021-00239-w

    Article  CAS  PubMed  Google Scholar 

  92. Zhang S, Shen J, Li D, Cheng Y (2021) Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 11:614–648. https://doi.org/10.7150/thno.47007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Banakar R, Eggenberger AL, Lee K (2019) High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice. Sci Rep 9:19902. https://doi.org/10.1038/s41598-019-55681-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liang Z, Chen K, Li T (2017) Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8:14261. https://doi.org/10.1038/ncomms14261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Kim K, Choi J, Won KH (2020) A stable DNA-free screening system for CRISPR/RNPs-mediated gene editing in hot and sweet cultivars of Capsicum annuum. BMC Plant Biol 20:449. https://doi.org/10.1186/s12870-020-02665-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Liu W, Rudis MR, Cheplick MH (2020) Lipofection-mediated genome editing using DNA-free delivery of the Cas9/gRNA ribonucleoprotein into plant cells. Plant Cell Rep 39:245–257. https://doi.org/10.1007/s00299-019-02488-w

    Article  CAS  PubMed  Google Scholar 

  97. Yu J, Tu L, Subburaj S (2020) Simultaneous targeting of duplicated genes in Petunia protoplasts for flower color modification via CRISPR-Cas9 ribonucleoproteins. Plant Cell Rep 40:1037–1045. https://doi.org/10.1007/s00299-020-02593-1

    Article  CAS  PubMed  Google Scholar 

  98. Zhao X, Jayarathna S, Turesson H (2021) Amylose starch with no detectable branching developed through DNA-free CRISPR-Cas9 mediated mutagenesis of two starch branching enzymes in potato. Sci Rep 11:4311. https://doi.org/10.1038/s41598-021-83462-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This manuscript is written by the leadership of the “Plant Science Initiative of Turkey”, a non-governmental organization aiming to bring the scientists together who work in the field of Plant Sciences in Turkey.

Funding

This review received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, EA, KY, MK, CK, UD; investigation, BAY, IÇ, İS; writing-original draft, EA, KY, MK, CK, BAY, IÇ, İS; writing-review and editing, EA, KY, MK, CK, UD; visualization, MK, BAY; supervision, EA, KY. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Emre Aksoy or Kubilay Yildirim.

Ethics declarations

Conflict of interest

The authors declare that there is no confict of interest regarding the publication of this article.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, E., Yildirim, K., Kavas, M. et al. General guidelines for CRISPR/Cas-based genome editing in plants. Mol Biol Rep 49, 12151–12164 (2022). https://doi.org/10.1007/s11033-022-07773-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07773-8

Keywords

Navigation