Skip to main content

Advertisement

Log in

Effects of thiostrepton alone or in combination with selumetinib on triple-negative breast cancer metastasis

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Objective

FoxM1 transcription factor contributes to tumor metastasis and poor prognosis in many cancers including triple-negative breast cancer (TNBC). In this study, we examined the effects of FoxM1 inhibitor Thiostrepton (THIO) alone or in combination with MEK inhibitor Selumetinib (SEL) on metastatic parameters in vitro and in vivo.

Methods

Cell viability was determined by MTT assay. Immunoblotting and immunohistochemistry was used to assess metastasis-related protein expressions in 4T1 cells and its allograft tumor model in BALB/c mice. In vivo uPA activity was determined by enzymatic methods.

Results

Both inhibitors were effective on the expressions of FoxM1, ERK, p-ERK, Twist, E-cadherin, and Vimentin alone or in combination in vitro. THIO significantly decreased 4T1 cell migration and changed the cell morphology from mesenchymal-like to epithelial-like structure. THIO was more effective than in combination with SEL in terms of metastatic protein expressions in vivo. THIO alone significantly inhibited mean tumor growth, decreased lung metastasis rate and tumor foci, however, no significant changes in these parameters were observed in the combined group. Immunohistochemically, FoxM1 expression intensity was decreased with THIO and its combination with SEL in the tumors.

Conclusions

This study suggests that inhibiting FoxM1 as a single target is more effective than combined treatment with MEK in theTNBC allograft model. The therapeutic efficacy of THIO should be investigated with further studies on appropriate drug delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 0:1–41

    Google Scholar 

  2. Gelmon K, Dent R, Mackey JR, Laing K, McLeod D, Verma S (2012) Targeting triple-negative breast cancer: optimising therapeutic outcomes. Ann Oncol 23:2223–2234

    Article  CAS  PubMed  Google Scholar 

  3. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Moses HL, Sanders ME, Pietenpol JA (2016) Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS ONE 11:e0157368

    Article  PubMed  PubMed Central  Google Scholar 

  4. O’Reilly EA, Gubbins L, Sharma S et al (2015) The fate of chemoresistance in triple negative breast cancer (TNBC). BBA Clin 3:257–275

    Article  PubMed  PubMed Central  Google Scholar 

  5. Collignon J, Lousberg L, Schroeder H, Jerusalem G (2016) Triple-negative breast cancer: Treatment challenges and solutions. Breast Cancer Targets Ther 8:93–107

    CAS  Google Scholar 

  6. Yu C, Chen L, Yie L, Wei L, Wen T, Liu Y, Chen H (2015) Targeting FoxM1 inhibits proliferation, invasion and migration of nasopharyngeal carcinoma through the epithelial-to-mesenchymal transition pathway. Oncol Rep. https://doi.org/10.3892/or.2015.3834

    Article  CAS  PubMed  Google Scholar 

  7. Liao G, Bin, Li XZ, Zeng S, Liu C, Yang SM, Yang L, Hu CJ, Bai JY (2018) Regulation of the master regulator FOXM1 in cancer. Cell Commun Signal 16:1–15

    Article  Google Scholar 

  8. Raychaudhuri P, Park HJ (2011) FoxM1: A Master Regulator of Tumor Metastasis: Figure 1. Cancer Res 71:4329–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamurcu Z, Delibaşı N, Nalbantoglu U et al (2019) FOXM1 plays a role in autophagy by transcriptionally regulating Beclin-1 and LC3 genes in human triple-negative breast cancer cells. J Mol Med 97:491–508

    Article  CAS  PubMed  Google Scholar 

  10. Xu N, Jia D, Chen W et al (2013) FoxM1 Is Associated with Poor Prognosis of Non-Small Cell Lung Cancer Patients through Promoting Tumor Metastasis. PLoS ONE 8:e59412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai J, Yang L, Wang J, Xiao Y, Ruan Q (2015) Prognostic Value of FOXM1 in Patients with Malignant Solid Tumor: A Meta-Analysis and System Review. Dis Markers 2015:1–10

  12. Lu X-F, Zeng D, Liang W-Q, Chen C-F, Sun S-M, Lin H-Y (2018) FoxM1 is a promising candidate target in the treatment of breast cancer. Oncotarget 9:842–852

    Article  PubMed  Google Scholar 

  13. Khongkow P, Gomes AR, Gong C et al (2016) Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene. https://doi.org/10.1038/onc.2015.152

    Article  CAS  PubMed  Google Scholar 

  14. Zona S, Bella L, Burton MJ, Nestal de Moraes G, Lam EWF (2014) FOXM1: An emerging master regulator of DNA damage response and genotoxic agent resistance. Biochim Biophys Acta - Gene Regul Mech 1839:1316–1322

    Article  CAS  Google Scholar 

  15. Kong FF, Qu ZQ, Yuan HH et al (2014) Overexpression of FOXM1 is associated with EMT and is a predictor of poor prognosis in non-small cell lung cancer. Oncol Rep 31:2660–2668

    Article  CAS  PubMed  Google Scholar 

  16. Ziegler Y, Laws MJ, Sanabria Guillen V et al (2019) Suppression of FOXM1 activities and breast cancer growth in vitro and in vivo by a new class of compounds. npj Breast Cancer 5:45

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dey P, Wang A, Ziegler Y, Kim SH, El-Ashry D, Katzenellenbogen JA, Katzenellenbogen BS (2020) Suppression of Tumor Growth, Metastasis, and Signaling Pathways by Reducing FOXM1 Activity in Triple Negative Breast Cancer. Cancers (Basel) 12:2677

    Article  CAS  Google Scholar 

  18. Tabatabaei-Dakhili SA, Aguayo-Ortiz R, Domínguez L, Velázquez-Martínez CA (2018) Untying the knot of transcription factor druggability: Molecular modeling study of FOXM1 inhibitors. J Mol Graph Model 80:197–210

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, Ruben EA, Rajadas J, Teng NNH (2015) In silico investigation of FOXM1 binding and novel inhibitors in epithelial ovarian cancer. Bioorg Med Chem 23:4576–4582

    Article  CAS  PubMed  Google Scholar 

  20. Kwok JMM, Myatt SS, Marson CM, Coombes RC, Constantinidou D, Lam EWF (2008) Thiostrepton selectively targets breast cancer cells through inhibition of forkhead box M1 expression. Mol Cancer Ther 7:2022–2032

    Article  CAS  PubMed  Google Scholar 

  21. Tan Y, Wang Q, Xie Y, Qiao X, Zhang S, Wang Y, Yang Y, Zhang B (2019) Identification of FOXM1 as a specific marker for triple-negative breast cancer. Int J Oncol 54:87–97

    CAS  PubMed  Google Scholar 

  22. Deschênes-Simard X, Kottakis F, Meloche S, Ferbeyre G (2014) ERKs in Cancer: Friends or Foes? Cancer Res 74:412–419

    Article  PubMed  Google Scholar 

  23. Braicu B et al (2019) A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel) 11:1618

    Article  CAS  Google Scholar 

  24. Adeyinka A, Nui Y, Cherlet T, Snell L, Watson PH, Murphy LC (2002) Activated mitogen-activated protein kinase expression during human breast tumorigenesis and breast cancer progression. Clin Cancer Res 8:1747–1753

    CAS  PubMed  Google Scholar 

  25. Gee JMW, Robertson JFR, Ellis IO, Nicholson RI (2001) Phosphorylation of Erk1 / 2 Mitogen-Activated Protein Kinase Is Associated With Poor Response To Anti-Hormonal Therapy and. Int J cancer 95:247–254

    Article  CAS  PubMed  Google Scholar 

  26. Mueller H, Flury N, Eppenberger-Castori S, Kueng W, David F, Eppenberger U (2000) Potential prognostic value of mitogen-activated protein kinase activity for disease-free survival of primary breast cancer patients. Int J Cancer 89:384–388

    Article  CAS  PubMed  Google Scholar 

  27. Esteva FJ, Sahin AA, Smith TL, Yang Y, Pusztai L, Nahta R, Buchholz TA, Buzdar AU, Hortobagyi GN, Bacus SS (2004) Prognostic significance of phosphorylated P38 mitogen-activated protein kinase and HER-2 expression in lymph node-positive breast carcinoma. Cancer 100:499–506

    Article  CAS  PubMed  Google Scholar 

  28. Ma RYM (2005) Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 118:795–806

    Article  CAS  PubMed  Google Scholar 

  29. Chan DW, Hui WWY, Cai PCH, Liu MX, Yung MMH, Mak CSL, Leung THY, Chan KKL, Ngan HYS (2012) Targeting GRB7/ERK/FOXM1 Signaling Pathway Impairs Aggressiveness of Ovarian Cancer Cells. PLoS ONE 7:e52578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metro G, Chiari R, Baldi A, De Angelis V, Minotti V, Crinò L (2013) Selumetinib: a promising pharmacologic approach for KRAS-mutant advanced non-small-cell lung cancer. Future Oncol 9:167–177

    Article  CAS  PubMed  Google Scholar 

  31. Haslett K, Koh P, Hudson A, Ryder WD, Falk S, Mullan D, Taylor B, Califano R, Blackhall F, Faivre-Finn C (2021) Phase I trial of the MEK inhibitor selumetinib in combination with thoracic radiotherapy in non-small cell lung cancer. Clin Transl Radiat Oncol 28:24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campagne O, Yeo KK, Fangusaro J, Stewart CF (2021) Clinical Pharmacokinetics and Pharmacodynamics of Selumetinib. Clin Pharmacokinet 60:283–303

    Article  CAS  PubMed  Google Scholar 

  33. Zhou Y, Lin S, Tseng K-F, Han K, Wang Y, Gan Z, Min D, Hu H (2016) Selumetinib suppresses cell proliferation, migration and trigger apoptosis, G1 arrest in triple-negative breast cancer cells. BMC Cancer 16:818

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pulaski BA, Ostrand-Rosenberg S (2000) Mouse 4T1 Breast Tumor Model. Curr Protoc Immunol 39:1–16

    Article  Google Scholar 

  35. Hegde NS, Sanders DA, Rodriguez R, Balasubramanian S (2011) The transcription factor FOXM1 is a cellular target of the natural product thiostrepton. Nat Chem 3:725–731

    Article  CAS  PubMed  Google Scholar 

  36. Jiang L, Wang P, Chen L, Chen H (2014) Down-regulation of FoxM1 by thiostrepton or small interfering RNA inhibits proliferation, transformation ability and angiogenesis, and induces apoptosis of nasopharyngeal carcinoma cells. Int J Clin Exp Pathol 7:5450–5460

    PubMed  PubMed Central  Google Scholar 

  37. Siraj AK, Pratheeshkumar P, Parvathareddy SK, Qadri Z, Thangavel S, Ahmed S, Al-Dayel F, Tulbah A, Ajarim D, Al-Kuraya KS (2018) FoxM1 is an independent poor prognostic marker and therapeutic target for advanced Middle Eastern breast cancer. Oncotarget 9:17466–17482

    Article  PubMed  PubMed Central  Google Scholar 

  38. Calvisi DF, Pinna F, Ladu S et al (2009) Forkhead box M1B is a determinant of rat susceptibility to hepatocarcinogenesis and sustains ERK activity in human HCC. Gut 58:679–687

    Article  CAS  PubMed  Google Scholar 

  39. Park HJ, Gusarova G, Wang Z et al (2011) Deregulation of FoxM1b leads to tumour metastasis. EMBO Mol Med 3:21–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Laoukili J, Alvarez M, Meijer LAT, Stahl M, Mohammed S, Kleij L, Heck AJR, Medema RH (2008) Activation of FoxM1 during G2 Requires Cyclin A/Cdk-Dependent Relief of Autorepression by the FoxM1 N-Terminal Domain. Mol Cell Biol 28:3076–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lüscher-Firzlaff JM, Lilischkis R, Lüscher B (2006) Regulation of the transcription factor FOXM1c by Cyclin E/CDK2. FEBS Lett 580:1716–1722

    Article  PubMed  Google Scholar 

  42. Conacci-Sorrell M, Simcha I, Ben-Yedidia T, Blechman J, Savagner P, Ben-Ze’ev A (2003) Autoregulation of E-cadherin expression by cadherin–cadherin interactions. J Cell Biol 163:847–857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bae G-Y, Choi S-J, Lee J-S, Jo J, Lee J, Kim J, Cha H-J (2013) Loss of E-cadherin activates EGFR-MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget 4:2512–2522

    Article  PubMed  PubMed Central  Google Scholar 

  44. Wierstra I (2013) FOXM1 (Forkhead box M1) in Tumorigenesis. In: Cell Cycle. pp 191–419

  45. Bao B, Wang Z, Ali S, Kong D, Banerjee S, Ahmad A, Li Y, Azmi AS, Miele L, Sarkar FH (2011) Over-expression of FoxM1 leads to epithelial-mesenchymal transition and cancer stem cell phenotype in pancreatic cancer cells. J Cell Biochem 112:2296–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Meng F-D (2015) FoxM1 overexpression promotes epithelial-mesenchymal transition and metastasis of hepatocellular carcinoma. World J Gastroenterol 21:196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qian J, Luo Y, Gu X, Zhan W, Wang X (2013) Twist1 Promotes Gastric Cancer Cell Proliferation through Up-Regulation of FoxM1. PLoS ONE 8:e77625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hong J, Zhou J, Fu J, He T, Qin J, Wang L, Liao L, Xu J (2011) Phosphorylation of Serine 68 of Twist1 by MAPKs Stabilizes Twist1 Protein and Promotes Breast Cancer Cell Invasiveness. Cancer Res 71:3980–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pellikainen JM, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma V-M (2004) Expression of Matrix Metalloproteinase (MMP)-2 and MMP-9 in Breast Cancer with a Special Reference to Activator Protein-2, HER2, and Prognosis. Clin Cancer Res 10:7621–7628

    Article  CAS  PubMed  Google Scholar 

  50. Li H, Cao D, Liu Y et al (2004) Prognostic value of matrix metalloproteinases (MMP-2 and MMP-9) in patients with lymph node-negative breast carcinoma. Breast Cancer Res Treat 88:75–85

    Article  CAS  PubMed  Google Scholar 

  51. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S (2016) Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem 31:177–183

    Article  PubMed  Google Scholar 

  52. NOEL A, JOST M, MAQUOI E (2008) Matrix metalloproteinases at cancer tumor–host interface. Semin Cell Dev Biol 19:52–60

    Article  CAS  PubMed  Google Scholar 

  53. Wang Z, Banerjee S, Kong D, Li Y, Sarkar FH (2007) Down-regulation of Forkhead Box M1 Transcription Factor Leads to the Inhibition of Invasion and Angiogenesis of Pancreatic Cancer Cells. Cancer Res 67:8293–8300

    Article  CAS  PubMed  Google Scholar 

  54. Wang I-C, Chen Y-J, Hughes DE, Ackerson T, Major ML, Kalinichenko VV, Costa RH, Raychaudhuri P, Tyner AL, Lau LF (2008) FoxM1 Regulates Transcription of JNK1 to Promote the G1/S Transition and Tumor Cell Invasiveness. J Biol Chem 283:20770–20778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yue M, Li S, Yan G, Li C, Kang Z (2018) Paeoniflorin inhibits cell growth and induces cell cycle arrest through inhibition of FoxM1 in colorectal cancer cells. Cell Cycle 17:240–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ai C, Zhang J, Lian S, Ma J, Győrffy B, Qian Z, Han Y, Feng Q (2020) FOXM1 functions collaboratively with PLAU to promote gastric cancer progression. J Cancer 11:788–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ma J, Qi G, Xu J, Ni H, Xu W, Ru G, Zhao Z, Xu W, He X (2017) Overexpression of forkhead box M1 and urokinase–type plasminogen activator in gastric cancer is associated with cancer progression and poor prognosis. Oncol Lett 14:7288–7296

    PubMed  PubMed Central  Google Scholar 

  58. Fantozzi A, Christofori G (2006) Mouse models of breast cancer metastasis. Breast Cancer Res 8:212

    Article  PubMed  PubMed Central  Google Scholar 

  59. Meng J, Peng H, Dai B et al (2009) High level of AKT activity is associated with resistance to MEK inhibitor AZD6244 (ARRY-142886). Cancer Biol Ther 8:2073–2080

    Article  CAS  PubMed  Google Scholar 

  60. Balmanno K, Chell SD, Gillings AS, Hayat S, Cook SJ (2009) Intrinsic resistance to the MEK1/2 inhibitor AZD6244 (ARRY-142886) is associated with weak ERK1/2 signalling and/or strong PI3K signalling in colorectal cancer cell lines. Int J cancer 125:2332–2341

    Article  CAS  PubMed  Google Scholar 

  61. Khan MA, Jain VK, Rizwanullah M, Ahmad J, Jain K (2019) PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: a review on drug discovery and future challenges. Drug Discov Today 24:2181–2191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank to Dr. Gunes Esendagli for his valuable contributions to this study, Dr. Digdem Yoyen Ermis for assistance animal studies and Ilknur Gunduz for preparing pathological samples.

Funding

This work was supported by the Scientific and Technological Research Council of Turkey, (TUBITAK) under Grant (number 1002-116S162) and Teaching Staff Training Program of Turkey.

Author information

Authors and Affiliations

Authors

Contributions

FDK, IDT, AE participated in the design, interpretation of the studies and analysis of the data and review of the manuscript; FDK and GE conducted the experiments, FDK wrote the manuscript, and IDT, AE edited the manuscript.

Corresponding author

Correspondence to Funda Demirtas Korkmaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicting interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demirtas Korkmaz, F., Dogan Turacli, I., Esendagli, G. et al. Effects of thiostrepton alone or in combination with selumetinib on triple-negative breast cancer metastasis. Mol Biol Rep 49, 10387–10397 (2022). https://doi.org/10.1007/s11033-022-07751-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07751-0

Keywords

Navigation