Skip to main content
Log in

Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance

  • REVIEW
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Biological and abiotic stresses such as salt, extreme temperatures, and pests and diseases place major constraints on plant growth and crop yields. Fatty acids (FAs) and FA- derivatives are unique biologically active substance that show a wide range of functions in biological systems. They are not only participated in the regulation of energy storage substances and cell membrane plasm composition, but also extensively participate in the regulation of plant basic immunity, effector induced resistance and systemic resistance and other defense pathways, thereby improving plant resistance to adversity stress. Fatty acid desaturases (FADs) is involved in the desaturation of fatty acids, where desaturated fatty acids can be used as substrates for FA-derivatives.

Objective

In this paper, the role of omega-FADs (ω-3 FADs and ω-6 FADs) in the prokaryotic and eukaryotic pathways of fatty acid biosynthesis in plant defense against stress (biological and abiotic stress) and the latest research progress were summarized. Moreover’ the existing problems in related research and future research directions were also discussed.

Results

Fatty acid desaturases are involved in various responses of plants during biotic and abiotic stress. For example, it is involved in regulating the stability and fluidity of cell membranes, reactive oxygen species signaling pathways, etc. In this review, we have collected several experimental studies to represent the differential effects of fatty acid desaturases on biotic and abiotic species.

Conclusion

Fatty acid desaturases play an important role in regulating biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy.

References

  1. Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7(7):957–970. https://doi.org/10.2307/3870050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lim GH, Singhal R, Kachroo A, Kachroo P (2017) Fatty acid- and lipid-mediated signaling in plant defense. Annu Rev Phytopathol 55:505–536. https://doi.org/10.1146/annurev-phyto-080516-035406

    Article  CAS  PubMed  Google Scholar 

  3. He M, Qin CX, Wang X, Ding NZ (2020) Plant unsaturated fatty acids: Biosynthesis and regulation. Front Plant Sci 11:390. https://doi.org/10.3389/fpls.2020.00390

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xue Y, Chen B, Win AN, Fu C, Lian J, Liu X, Wang R, Zhang X, Chai Y (2018) Omega-3 fatty acid desaturase gene family from two omega-3 sources, Salvia hispanica and Perilla frutescens: Cloning, characterization and expression. PLoS ONE 13(1):e0191432. https://doi.org/10.1371/journal.pone.0191432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS (2015) Indole-3-acetic acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry 111:65–71. https://doi.org/10.1016/j.phytochem.2014.12.022

    Article  CAS  PubMed  Google Scholar 

  6. Shi Y, Yue X, An L (2018) Integrated regulation triggered by a cryophyte ω-3 desaturase gene confers multiple-stress tolerance in tobacco. J Exp Bot 69(8):2131–2148. https://doi.org/10.1093/jxb/ery050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Botella C, Sautron E, Boudiere L, Michaud M, Dubots E, Yamaryo-Botte Y, Albrieux C, Marechal E, Block MA, Jouhet J (2016) ALA10, a phospholipid flippase, controls FAD2/FAD3 desaturation of phosphatidylcholine in the ER and affects chloroplast lipid composition in Arabidopsis thaliana. Plant Physiol 170(3):1300–1314. https://doi.org/10.1104/pp.15.01557

    Article  CAS  PubMed  Google Scholar 

  8. Zhong D, Du H, Wang Z, Huang B (2011) Genotypic variation in fatty acid composition and unsaturation levels in bermudagrass associated with leaf dehydration tolerance. J. Ame. Society Horticultural Sci 136(1):35–40. https://doi.org/10.2503/jjshs1.80.113

    Article  CAS  Google Scholar 

  9. He M, He CQ, Ding NZ (2018) Abiotic stresses: General defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771. https://doi.org/10.3389/fpls.2018.01771

    Article  PubMed  PubMed Central  Google Scholar 

  10. Román Á, Andreu V, Hernández ML, Lagunas B, Picorel R, Martínez-Rivas JM, Alfonso M (2012) Contribution of the different omega-3 fatty acid desaturase methylation and chromatin patterning genes to the cold response in soybean. J Exp Bot 63(13):4973–4982. https://doi.org/10.1093/jxb/ers174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Garab G (2014) Hierarchical organization and structural flexibility of thylakoid membranes. Biochim Biophys Acta 1837(4):481–494. https://doi.org/10.1016/j.bbabio.2013.12.003

    Article  CAS  PubMed  Google Scholar 

  12. Sarcina M, Murata N, Tobin MJ, Mullineaux CW (2003) Lipid diffusion in the thylakoid membranes of the cyanobacterium Synechococcus sp.: effect of fatty acid desaturation. FEBS Lett 553(3):295–298. https://doi.org/10.1016/s0014-5793(03)01031-7

    Article  CAS  PubMed  Google Scholar 

  13. Kruk J, Szymanska R (2021) Singlet oxygen oxidation products of carotenoids, fatty acids and phenolic prenyllipids. J Photoch Photobio B 216:112148. https://doi.org/10.1016/j.jphotobiol.2021.112148

    Article  CAS  Google Scholar 

  14. Zhang B, Xia P, Yu H, Li W, Chai W, Liang Z (2021) Based on the whole genome clarified the evolution and expression process of fatty acid desaturase genes in three soybeans. Int J Biol Macromol 182:1966–1980. https://doi.org/10.1016/j.ijbiomac.2021.05.161

    Article  CAS  PubMed  Google Scholar 

  15. Raboanatahiry N, Yin Y, Chen K, He J, Yu L, Li M (2021) In silico analysis of fatty acid desaturases structures in Camelina sativa, and functional evaluation of Csafad7 and Csafad8 on seed oil formation and seed morphology. Int J Mol Sci 22(19):10857. https://doi.org/10.3390/ijms221910857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li J, Liu A, Najeeb U, Zhou W, Liu H, Yan G, Gill RA, Yun X, Bai Q, Xu L (2021) Genome-wide investigation and expression analysis of membrane-bound fatty acid desaturase genes under different biotic and abiotic stresses in sunflower (Helianthus annuus L.). Int J Biol Macromol 175:188–198. https://doi.org/10.1016/j.ijbiomac.2021.02.013

    Article  CAS  PubMed  Google Scholar 

  17. Chen QM, Cheng DJ, Liu SP, Ma ZG, Tan X, Zhao P (2014) Genome-wide identification and expression profiling of the fatty acid desaturase gene family in the silkworm. Bombyx mori. Genet Mol Res 13(2):3747–3760. https://doi.org/10.4238/2014.May.13.2

    Article  CAS  PubMed  Google Scholar 

  18. Liu W, Li W, He Q, Daud MK, Chen J, Zhu S (2015) Characterization of 19 genes encoding membrane-bound fatty acid desaturases and their expression profiles in Gossypium raimondii under low temperature. PLoS ONE 10(4):e0123281. https://doi.org/10.1371/journal.pone.0123281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang JJ, Hao JJ, Zhang YR, Wang YL, Li MY, Miao HL, Zou XJ, Liang B (2017) Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. J Lipid Res 58(9):1845–1854. https://doi.org/10.1194/jlr.M077198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kumar R, Tran LSP, Neelakandan AK, Nguyen HT (2012) Higher plant cytochrome b5 polypeptides modulate fatty acid desaturation. PLoS ONE 7(2):e31370. https://doi.org/10.1371/journal.pone.0031370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar R, Wallis JG, Skidmore C, Browse J (2006) A mutation in Arabidopsis cytochrome b5 reductase identified by high-throughput screening differentially affects hydroxylation and desaturation. Plant J 48(6):920–932. https://doi.org/10.1111/j.1365-313X.2006.02925.x

    Article  CAS  PubMed  Google Scholar 

  22. Lee MW, Padilla CS, Gupta C, Galla A, Pereira A, Li J, Goggin FL (2020) The FATTY ACID DESATURASE2 family in tomato contributes to primary metabolism and stress responses. Plant Physiol 182(2):1083–1099. https://doi.org/10.1104/pp.19.00487

    Article  CAS  PubMed  Google Scholar 

  23. Gao QM, Yu K, Xia Y, Shine MB, Wang C, Navarre D, Kachroo A, Kachroo P (2014) Mono- and digalactosyldiacylglycerol lipids function nonredundantly to regulate systemic acquired resistance in plants. Cell Rep 9(5):1681–1691. https://doi.org/10.1016/j.celrep.2014.10.069

    Article  CAS  PubMed  Google Scholar 

  24. Zhang QY, Wang LY, Kong FY, Deng YS, Li B, Meng QW (2012) Constitutive accumulation of zeaxanthin in tomato alleviates salt stress-induced photoinhibition and photooxidation. Physiol Planta 146(3):363–373. https://doi.org/10.1111/j.1399-3054.2012.01645.x

    Article  CAS  Google Scholar 

  25. Aguilar PS, de Mendoza D (2006) Control of fatty acid desaturation: A mechanism conserved from bacteria to humans. Mol Microbiol 62(6):1507–1514. https://doi.org/10.1111/j.1365-2958.2006.05484.x

    Article  CAS  PubMed  Google Scholar 

  26. Shahidi F, Zhong Y (2010) Lipid oxidation and improving the oxidative stability. Chem Soc Rev 39(11):4067–4079. https://doi.org/10.1039/b922183m

    Article  CAS  PubMed  Google Scholar 

  27. Chehab EW, Perea JV, Gopalan B, Theg S, Dehesh K (2007) Oxylipin pathway in rice and Arabidopsis. J Integr Plant Biol 49(1):43–51. https://doi.org/10.1111/j.1744-7909.2006.00405.x

    Article  CAS  Google Scholar 

  28. Cao S, Zhou XR, Wood CC, Green AG, Singh SP, Liu L, Liu Q (2013) A large and functionally diverse family of FAD2 genes in safflower (Carthamus tinctorius L). BMC Plant Biol 13:5. https://doi.org/10.1186/1471-2229-13-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haun W, Coffman A, Clasen BM, Demorest ZL, Lowy A, Ray E, Retterath A, Stoddard T, Juillerat A, Cedrone F, Mathis L, Voytas DF, Zhang F (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12(7):934–940. https://doi.org/10.1111/pbi.12201

    Article  CAS  PubMed  Google Scholar 

  30. Upchurch RG (2008) Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress. Biotechnol Lett 30(6):967–977. https://doi.org/10.1007/s10529-008-9639-z

    Article  CAS  PubMed  Google Scholar 

  31. López Alonso D, García-Maroto F, Rodríguez-Ruiz J, Garrido JA, Vilches MA (2003) Evolution of the membrane-bound fatty acid desaturases. Biochem Syst Ecol 31(10):1111–1124. https://doi.org/10.1016/S0305-1978(03)00041-3

    Article  CAS  Google Scholar 

  32. Sperling P, Ternes P, Zank TK, Heinz E (2003) The evolution of desaturases. Prostaglandins Leukot Essent Fatty Acids 68(2):73–95. https://doi.org/10.1016/S0952-3278(02)00258-2

    Article  CAS  PubMed  Google Scholar 

  33. Lee JM, Lee H, Kang S, Park WJ (2016) Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 8(1):E23. https://doi.org/10.3390/nu8010023

    Article  CAS  PubMed  Google Scholar 

  34. Damude HG, Zhang H, Farral L, Ripp KG, Tomb JF, Hollerbach D, Yadav NS (2006) Identification of bifunctional delta12/omega3 fatty acid desaturases for improving the ratio of omega3 to omega6 fatty acids in microbes and plants. Proc Natl Acad Sci USA 103(25):9446–9451. https://doi.org/10.1073/pnas.0511079103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meesapyodsuk D, Qiu X (2012) The front-end desaturase: structure, function, evolution and biotechnological use. Lipids 47(3):227–237. https://doi.org/10.1007/s11745-011-3617-2

    Article  CAS  PubMed  Google Scholar 

  36. Wallis JG, Watts JL, Browse J (2002) Polyunsaturated fatty acid synthesis: what will they think of next? Trends Biochem Sci 27(9):467. https://doi.org/10.1016/S0968-0004(02)02168-0

    Article  CAS  PubMed  Google Scholar 

  37. Bai Y, McCoy JG, Levin EJ, Sobrado P, Rajashankar KR, Fox BG, Zhou M (2015) X-ray structure of a mammalian stearoyl-CoA desaturase. Nature 524(7564):252–256. https://doi.org/10.1038/nature14549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rincon G, Islas-Trejo A, Castillo AR, Bauman DE, German BJ, Medrano JF (2012) Polymorphisms in genes in the SREBP1 signalling pathway and SCD are associated with milk fatty acid composition in Holstein cattle. J Dairy Res 79(1):66–75. https://doi.org/10.1017/S002202991100080X

    Article  CAS  PubMed  Google Scholar 

  39. Cai Y (2020) Lipid synthesis and beyond: SAD fatty acid desaturases contribute to seed development. Plant Cell 32(11):3386–3387. https://doi.org/10.1105/tpc.20.00792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang J, Yu L, Schmidt RE, Su C, Huang X, Gould K, Cao G (2005) Characterization of HSCD5, a novel human stearoyl-CoA desaturase unique to primates. Biochem Biophys Res Commun 332:735–742. https://doi.org/10.1016/j.bbrc.2005.05.013

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Zhang X, Wang X, Xu J, Wang M, Li L, Bai G, Fang H, Hu S, Li J, Yan J, Li J, Yang X (2019) SEED CAROTENOID DEFICIENT functions in isoprenoid biosynthesis via the plastid MEP pathway. Plant Physiol 179(4):1723–1738. https://doi.org/10.1104/pp.18.01148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Meesapyodsuk D, Qiu X (2014) Structure determinants for the substrate specificity of acyl-CoA Δ9 desaturases from a marine copepod. ACS Chem Biol 9(4):922–934. https://doi.org/10.1021/cb400675d

    Article  CAS  PubMed  Google Scholar 

  43. Heilmann I, Mekhedov S, King B, Browse J, Shanklin J (2004) Identification of the Arabidopsis palmitoyl-monogalactosyldiacylglycerol Δ7-desaturase gene FAD5, and effects of plastidial retargeting of Arabidopsis desaturases on the fad5 mutant phenotype. Plant Physiol 136(4):4237–4245. https://doi.org/10.1104/pp.104.052951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith MA, Dauk M, Ramadan H, Yang H, Seamons LE, Haslam RP, Beaudoin F, Ramirez-Erosa I, Forseille L (2013) Involvement of Arabidopsis ACYL-COENZYME A DESATURASE-LIKE2 (At2g31360) in the biosynthesis of the very-long-chain monounsaturated fatty acid components of membrane lipids. Plant Physiol 161(1):81–96. https://doi.org/10.1104/pp.112.202325

    Article  CAS  PubMed  Google Scholar 

  45. Sato M, Nagano M, Jin S, Miyagi A, Yamaguchi M, Kawai-Yamada M, Ishikawa T (2019) Plant-unique cis/trans isomerism of long-chain base unsaturation is selectively required for aluminum tolerance resulting from glucosylceramide-dependent plasma membrane fluidity. Plants (Basel) 9(1):19. https://doi.org/10.3390/plants9010019

    Article  CAS  Google Scholar 

  46. Horn PJ, Smith MD, Clark TR, Froehlich JE, Benning C (2020) PEROXIREDOXIN Q stimulates the activity of the chloroplast 16:1(Delta 3trans) FATTY ACID DESATURASE4. Plant J 102(4):718–729. https://doi.org/10.1111/tpj.14657

    Article  CAS  PubMed  Google Scholar 

  47. Afitlhile M, Duffield-Duncan K, Fry M, Workman S, Hum-Musser S, Hildebrand D (2015) The toc132toc120 heterozygote mutant of Arabidopsis thaliana accumulates reduced levels of hexadecatrienoic acid. Plant Physiol Bioch 96:426–435. https://doi.org/10.1016/j.plaphy.2015.09.006

    Article  CAS  Google Scholar 

  48. Li-Beisson Y, Shorrosh B, Beisson F, Andersson MX, Arondel V, B. S. Bates PD, Bird D, Debono A, Durrett TP, Franke RB, Graham IA, Katayama K, Kelly AA, Larson T, Markham JE, Miquel M, Molina I, Nishida I, Rowland O, Samuels L, Schmid KM, Wada H, Welti R, Xu C, ZR, Ohlrogge J, (2013) Acyl-lipid metabolism. Arabidopsis Book 11:e0161. https://doi.org/10.1199/tab.0133

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kachroo A, Kachroo P (2009) Fatty Acid-derived signals in plant defense. Annu Rev Phytopathol 47:153–176. https://doi.org/10.1146/annurev-phyto-080508-081820

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Liu LN, Meng Q, Fan H, Sui N (2020) The roles of chloroplast membrane lipids in abiotic stress responses. Plant Signal Behav 15(11):1807152. https://doi.org/10.1080/15592324.2020.1807152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Holzl G, Dormann P (2019) Chloroplast lipids and their biosynthesis. Annu Rev Plant Biol 70:51–81. https://doi.org/10.1146/annurev-arplant-050718-100202

    Article  CAS  PubMed  Google Scholar 

  52. Yu CW, Lin YT, Li HM (2020) Increased ratio of galactolipid MGDG: DGDG induces jasmonic acid overproduction and changes chloroplast shape. New Phytol 228(4):1327–1335. https://doi.org/10.1111/nph.16766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 A resolution. Nature 411(6840):909–917. https://doi.org/10.1038/35082000

    Article  CAS  PubMed  Google Scholar 

  54. Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438(7070):1040–1044. https://doi.org/10.1038/nature04224

    Article  CAS  PubMed  Google Scholar 

  55. Umena Y, Kawakami K, Shen JR, Kamiya N (2011) Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473(7345):55–60. https://doi.org/10.1038/nature09913

    Article  CAS  PubMed  Google Scholar 

  56. Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426(6965):413–418. https://doi.org/10.1038/nature02155

    Article  CAS  PubMed  Google Scholar 

  57. Sakurai I, Mizusawa N, Wada H, Sato N (2007) Digalactosyldiacylglycerol is required for stabilization of the oxygen-evolving complex in photosystem II. Plant Physiol 145(4):1361–1370. https://doi.org/10.1104/pp.107.106781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Fujii S, Kobayashi K, Nagata N, Masuda T, Wada H (2018) Digalactosyldiacylglycerol is essential for organization of the membrane structure in etioplasts. Plant Physiol 177(4):1487–1497. https://doi.org/10.1104/pp.18.00227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Higashi Y, Okazaki Y, Myouga F, Shinozaki K, Saito K (2015) Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana. Sci Rep-UK 5:10533. https://doi.org/10.1038/srep10533

    Article  Google Scholar 

  60. Higashi Y, Saito K (2019) Lipidomic studies of membrane glycerolipids in plant leaves under heat stress. Prog Lipid Res 75:100990. https://doi.org/10.1016/j.plipres.2019.100990

    Article  CAS  PubMed  Google Scholar 

  61. Bejaoui F, Salas JJ, Nouairi I, Smaoui A, Abdelly C, Martínez-Force E, Youssef NB (2016) Changes in chloroplast lipid contents and chloroplast ultrastructure in Sulla carnosa and Sulla coronaria leaves under salt stress. J Plant Physiol 198:32–38. https://doi.org/10.1016/j.jplph.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  62. Rottet S, Besagni C (1847) Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta 9:889–899. https://doi.org/10.1016/j.bbabio.2015.02.002

    Article  CAS  Google Scholar 

  63. Sebastiana M, Duarte B, Monteiro F, Malho R, Cacador I, Matos AR (2019) The leaf lipid composition of ectomycorrhizal oak plants shows a drought-tolerance signature. Plant Physiol Biochem 144:157–165. https://doi.org/10.1016/j.plaphy.2019.09.032

    Article  CAS  PubMed  Google Scholar 

  64. Nair PMG, Kang I, Moon B, Lee C (2009) Effects of low temperature stress on rice (Oryza sativa L.) plastid ω-3 desaturase gene, OsFAD8 and its functional analysis using T-DNA mutants. Plant Cell Tiss Organ Cult 98(1):87–96. https://doi.org/10.1007/s11240-009-9541-y

    Article  CAS  Google Scholar 

  65. Soria-Garcï AÏN, Rubio MAC, Lagunas B, Lï Pez-Gomollï NS, Lujï NMALÏN, Dï Az-Guerra RL, Picorel R, Alfonso M (2019) Tissue distribution and specific contribution of Arabidopsis FAD7 and FAD8 plastid desaturases to the JA- and ABA-mediated cold stress or defense responses. Plant Cell Physiol 60(5):1025–1040. https://doi.org/10.1093/pcp/pcz017

    Article  CAS  Google Scholar 

  66. Wang RS, Pandey S, Li S, Gookin TE, Zhao Z, Albert R, Assmann SM (2011) Common and unique elements of the ABA-regulated transcriptome of Arabidopsis guard cells. BMC Genomics 12:216–240. https://doi.org/10.1186/1471-2164-12-216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Román Á, Hernández ML, Soria-García Á, López-Gomollón S, Lagunas B, Picorel R, Martínez-Rivas JM, Alfonso M (2015) Non-redundant contribution of the plastidial FAD8 ω-3 desaturase to glycerolipid unsaturation at different temperatures in Arabidopsis. Mol Plant 8(11):1599–1611. https://doi.org/10.1016/j.molp.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  68. Li HM, Yu CW (2018) Chloroplast galactolipids: The link between photosynthesis, chloroplast shape, jasmonates, phosphate starvation and freezing tolerance. Plant Cell Physiol 59(6):1128–1134. https://doi.org/10.1093/pcp/pcy088

    Article  CAS  PubMed  Google Scholar 

  69. Kachroo A, Robin GP (2013) Systemic signaling during plant defense. Curr Opin Plant Biol 16(4):527–533. https://doi.org/10.1016/j.pbi.2013.06.019

    Article  CAS  PubMed  Google Scholar 

  70. Arisz SA, Heo JY, Koevoets IT, Zhao T, van Egmond P, Meyer AJ, Zeng W, Niu X, Wang B, Mitchell-Olds T, Schranz ME, Testerink C (2018) DIACYLGLYCEROL ACYLTRANSFERASE1 contributes to freezing tolerance. Plant Physiol 177(4):1410–1424. https://doi.org/10.1104/pp.18.00503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Howe GA, Major IT, Koo AJ (2018) Modularity in jasmonate signaling for multistress resilience. Annu Rev Plant Biol 69:387–415. https://doi.org/10.1146/annurev-arplant-042817-040047

    Article  CAS  PubMed  Google Scholar 

  72. Mene-Saffrane L, Dubugnon L, Chetelat A, Stolz S, Gouhier-Darimont C, Farmer EE (2009) Nonenzymatic oxidation of trienoic fatty acids contributes to reactive oxygen species management in Arabidopsis. J Biol Chem 284(3):1702–1708. https://doi.org/10.1074/jbc.M807114200

    Article  CAS  PubMed  Google Scholar 

  73. Browse J (2009) The power of mutants for investigating jasmonate biosynthesis and signaling. Phytochemistry 70(13–14):1539–1546. https://doi.org/10.1016/j.phytochem.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  74. Wasternack C, Hause B (2013) Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann Bot 111(6):1021–1058. https://doi.org/10.1093/aob/mct067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Xu J, Wang X, Zu H, Zeng X, Baldwin IT, Lou Y, Li R (2021) Molecular dissection of rice phytohormone signaling involved in resistance to a piercing-sucking herbivore. New Phytol 230(4):1639–1652. https://doi.org/10.1111/nph.17251

    Article  CAS  PubMed  Google Scholar 

  76. Sánchez-Hernández C, López MG, Délano-Frier JP (2006) Reduced levels of volatile emissions in jasmonate-deficient spr2 tomato mutants favour oviposition by insect herbivores. Plant Cell Environ 29(4):546–557. https://doi.org/10.1111/j.1365-3040.2005.01431.x

    Article  CAS  PubMed  Google Scholar 

  77. Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15(12):2866–2884. https://doi.org/10.1105/tpc.016253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bleeker PM, Diergaarde PJ, Ament K, Guerra J, Weidner M, Schütz S, de Both MTJ, Haring MA, Schuurink RC (2009) The role of specific tomato volatiles in tomato-whitefly interaction. Plant Physiol 151(2):925–935. https://doi.org/10.1104/pp.109.142661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Nguyen VC, Nakamura Y, Kanehara K (2019) Membrane lipid polyunsaturation mediated by Fatty Acid Desaturase 2 (FAD2) is involved in endoplasmic reticulum stress tolerance in Arabidopsis thaliana. Plant J 99(3):478–493. https://doi.org/10.1111/tpj.14338

    Article  CAS  PubMed  Google Scholar 

  80. Wang J, Liu Z, Liu H, Peng D, Zhang J, Chen M (2021) Linum usitatissimum FAD2A and FAD3A enhance seed polyunsaturated fatty acid accumulation and seedling cold tolerance in Arabidopsis thaliana. Plant Sci 311:111014. https://doi.org/10.1016/j.plantsci.2021.111014

    Article  CAS  PubMed  Google Scholar 

  81. Oh YJ, Kim H, Seo SH, Hwang BG, Chang YS, Lee J, Lee DW, Sohn EJ, Lee SJ, Lee Y, Hwang I (2016) Cytochrome b5 reductase 1 triggers serial reactions that lead to iron uptake in plants. Mol Plant 9(4):501–513. https://doi.org/10.1016/j.molp.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  82. Wang HS, Yu C, Tang XF, Wang LY, Dong XC, Meng QW (2010) Antisense-mediated depletion of tomato endoplasmic reticulum omega-3 fatty acid desaturase enhances thermal tolerance. J Integr Plant Biol 52(6):568–577. https://doi.org/10.1111/j.1744-7909.2010.00957.x

    Article  CAS  PubMed  Google Scholar 

  83. Yu A, Shi T, Zhang B, Xing L, Li M (2012) Effects of low temperature and exogenous unsaturated fatty acids on fatty acid desaturase gene expression of Mortierella alpina ATCC 16266. Wei Sheng Wu Xue Bao 52(11):1369–1377. https://doi.org/10.1007/s11783-011-0280-z

    Article  CAS  PubMed  Google Scholar 

  84. Zhang JT, Zhu JQ, Zhu Q, Liu H, Gao XS, Zhang HX (2009) Fatty acid desaturase-6 (Fad6) is required for salt tolerance in Arabidopsis thaliana. Biochem Biophys Res Commun 390(3):469–474. https://doi.org/10.1016/j.bbrc.2009.09.095

    Article  CAS  PubMed  Google Scholar 

  85. Im YJ, Kim MS, Yang KY, Kim YH, Back K, Cho BH (2004) Antisense expression of a ω-3 fatty acid desaturase gene in tobacco plants enhances susceptibility against pathogens. Can J Bot 82(3):297–303. https://doi.org/10.1139/b03-151

    Article  CAS  Google Scholar 

  86. Li L, Li C, Lee GI, Howe GA (2002) Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci USA 99(9):6416–6421. https://doi.org/10.1073/pnas.072072599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. D’Angeli S, Falasca G, Matteucci M, Altamura MM (2013) Cold perception and gene expression differ in Olea europaea seed coat and embryo during drupe cold acclimation. New Phytol 197(1):123–138. https://doi.org/10.1111/j.1469-8137.2012.04372.x

    Article  CAS  PubMed  Google Scholar 

  88. Nakamura S, Hondo K, Kawara T, Okazaki Y, Saito K, Kobayashi K, Yaeno T, Yamaoka N, Nishiguchi M (2016) Conferring high-temperature tolerance to nontransgenic tomato scions using graft transmission of RNA silencing of the fatty acid desaturase gene. Plant Biotechnol J 14(2):783–790. https://doi.org/10.1111/pbi.12429

    Article  CAS  PubMed  Google Scholar 

  89. Ye H, Folz J, Li C, Zhang Y, Hou Z, Zhang L, Su S (2021) Response of metabolic and lipid synthesis gene expression changes in Camellia oleifera to mulched ecological mat under drought conditions. Sci Total Environ 795:148856. https://doi.org/10.1016/j.scitotenv.2021.148856

    Article  CAS  PubMed  Google Scholar 

  90. Im YJ, Han O, Chung GC, Cho BH (2002) Antisense expression of an Arabidopsis omega-3 fatty acid desaturase gene reduces salt/drought tolerance in transgenic tobacco plants. Mol Cells 13(2):264–271. https://doi.org/10.1016/S0957-4158(01)00037-X

    Article  CAS  PubMed  Google Scholar 

  91. Avila CA, Arévalo-Soliz LM, Jia L, Navarre DA, Chen Z, Howe GA, Meng QW, Smith JE, Goggin FL (2012) Loss of function of FATTY ACID DESATURASE7 in tomato enhances basal aphid resistance in a salicylate-dependent manner. Plant Physiol 158(4):2028–2041. https://doi.org/10.1104/pp.111.191262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Yara A, Yaeno T, Hasegawa M, Seto H, Montillet JL, Kusumi K, Seo S, Iba K (2007) Disease resistance against Magnaporthe grisea is enhanced in transgenic rice with suppression of ω-3 fatty acid desaturases. Plant Cell Physiol 48(9):1263–1274. https://doi.org/10.1093/pcp/pcm107

    Article  CAS  PubMed  Google Scholar 

  93. Domínguez T, Hernández ML, Pennycooke JC, Jiménez P, Martínez-Rivas JM, Sanz C, Stockinger EJ, Sánchez-Serrano JJ, Sanmartín M (2010) Increasing ω-3 desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiol 153(2):655–665. https://doi.org/10.1104/pp.110.154815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Murakami Y, Tsuyama M, Kobayashi Y, Kodama H, Iba K (2000) Trienoic fatty acids and plant tolerance of high temperature. Science 287(5452):476–479. https://doi.org/10.1126/science.287.5452.476

    Article  CAS  PubMed  Google Scholar 

  95. Routaboul JM, Skidmore C, Wallis JG, Browse J (2012) Arabidopsis mutants reveal that short- and long-term thermotolerance have different requirements for trienoic fatty acids. J Exp Bot 63(3):1435–1443. https://doi.org/10.1093/jxb/err381

    Article  CAS  PubMed  Google Scholar 

  96. Mikami K, Murata N (2003) Membrane fluidity and the perception of environmental signals in cyanobacteria and plants. Prog Lipid Res 42(6):527–543. https://doi.org/10.1016/s0163-7827(03)00036-5

    Article  CAS  PubMed  Google Scholar 

  97. Zhang M, Barg R, Yin M, Gueta-Dahan Y, Leikin-Frenkel A, Salts Y, Shabtai S, Ben-Hayyim G (2005) Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant J 44(3):361–371. https://doi.org/10.1111/j.1365-313X.2005.02536.x

    Article  CAS  PubMed  Google Scholar 

  98. Ding Y, Shi Y, Yang S (2019) Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222(4):1690–1704. https://doi.org/10.1111/nph.15696

    Article  PubMed  Google Scholar 

  99. Liu JX, Srivastava R, Che P, Howell SH (2007) Salt stress responses in Arabidopsis utilize a signal transduction pathway related to endoplasmic reticulum stress signaling. Plant J 51(5):897–909. https://doi.org/10.1111/j.1365-313X.2007.03195.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Soltani Gishini MF, Zebarjadi A, Abdoli-Nasab M, Jalali Javaran M, Kahrizi D, Hildebrand D (2020) Endoplasmic reticulum retention signaling and transmembrane channel proteins predicted for oilseed omega3 fatty acid desaturase 3 (FAD3) genes. Funct Integr Genomics 20(3):433–458. https://doi.org/10.1007/s10142-019-00718-8

    Article  CAS  PubMed  Google Scholar 

  101. Negi J, Munemasa S, Song B, Tadakuma R, Fujita M, Azoulay-Shemer T, Engineer CB, Kusumi K, Nishida I, Schroeder JI, Iba K (2018) Eukaryotic lipid metabolic pathway is essential for functional chloroplasts and CO2 and light responses in Arabidopsis guard cells. Proc Natl Acad Sci USA 115(36):9038–9043. https://doi.org/10.1073/pnas.1810458115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lavell AA, Benning C (2019) Cellular organization and regulation of plant glycerolipid metabolism. Plant Cell Physiol 60(6):1176–1183. https://doi.org/10.1093/pcp/pcz016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Michaud M, Jouhet J (2019) Lipid trafficking at membrane contact sites during plant development and stress response. Front Plant Sci 10:2. https://doi.org/10.3389/fpls.2019.00002

    Article  PubMed  PubMed Central  Google Scholar 

  104. Mehrshahi P, Johnny C, DellaPenna D (2014) Redefining the metabolic continuity of chloroplasts and ER. Trends Plant Sci 19(8):501–507. https://doi.org/10.1016/j.tplants.2014.02.013

    Article  CAS  PubMed  Google Scholar 

  105. Karki N, Johnson BS, Bates PD (2019) Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. Plant Cell 31(11):2768–2788. https://doi.org/10.1105/tpc.19.00121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhang G, Ahmad MZ, Chen B, Manan S, Zhang Y, Jin H, Wang X, Zhao J (2020) Lipidomic and transcriptomic profiling of developing nodules reveals the essential roles of active glycolysis and fatty acid and membrane lipid biosynthesis in soybean nodulation. Plant J 103(4):1351–1371. https://doi.org/10.1111/tpj.14805

    Article  CAS  PubMed  Google Scholar 

  107. Xu C, Fan J, Froehlich JE, Awai K, Benning C (2005) Mutation of the TGD1 chloroplast envelope protein affects phosphatidate metabolism in Arabidopsis. Plant Cell 17(11):3094–3110. https://doi.org/10.1105/tpc.105.035592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Roston RL, Gao J, Murcha MW, Whelan J, Benning C (2012) TGD1, −2, and −3 proteins involved in lipid trafficking form ATP-binding cassette (ABC) transporter with multiple substrate-binding proteins. J Biol Chem 287(25):21406–21415. https://doi.org/10.1074/jbc.M112.370213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yang Y, Zienkiewicz A, Lavell A, Benning C (2017) Coevolution of domain interactions in the chloroplast TGD1, 2, 3 lipid transfer complex specific to brassicaceae and poaceae plants. Plant Cell 29(6):1500–1515. https://doi.org/10.1105/tpc.17.00182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wang Z, Anderson NS, Benning C (2013) The phosphatidic acid binding site of the Arabidopsis trigalactosyldiacylglycerol 4 (TGD4) protein required for lipid import into chloroplasts. J Biol Chem 288(7):4763–4771. https://doi.org/10.1074/jbc.M112.438986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Martz F, Kiviniemi S, Palva TE, Sutinen ML (2006) Contribution of omega-3 fatty acid desaturase and 3-ketoacyl-ACP synthase II (KASII) genes in the modulation of glycerolipid fatty acid composition during cold acclimation in birch leaves. J Exp Bot 57(4):897–909. https://doi.org/10.1093/jxb/erj075

    Article  CAS  PubMed  Google Scholar 

  112. Hernández ML, Sicardo MD, Martínez-Rivas JM (2016) Differential contribution of endoplasmic reticulum and chloroplast ω-3 fatty acid desaturase genes to the linolenic acid content of olive (Olea europaea) fruit. Plant Cell Physiol 57(1):138–151. https://doi.org/10.1093/pcp/pcv159

    Article  CAS  PubMed  Google Scholar 

  113. Liu L, Li J (2019) Communications between the endoplasmic reticulum and other organelles during abiotic stress response in plants. Front Plant Sci 10:749. https://doi.org/10.3389/fpls.2019.00749

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cecchini NM, Steffes K, Schläppi MR, Gifford AN, Greenberg JT (2015) Arabidopsis AZI1 family proteins mediate signal mobilization for systemic defence priming. Nat Commun 6:7658. https://doi.org/10.1038/ncomms8658

    Article  PubMed  Google Scholar 

  115. Li Q, Zheng Q, Shen W, Cram D, Fowler DB, Wei Y, Zou J (2015) Understanding the biochemical basis of temperature-induced lipid pathway adjustments in plants. Plant Cell 27(1):86–103. https://doi.org/10.1105/tpc.114.134338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Heinz E, Roughan PG (1983) Similarities and differences in lipid metabolism of chloroplasts isolated from 18:3 and 16:3 plants. Plant Physiol 72(2):273–279. https://doi.org/10.1104/pp.72.2.273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Arunga RO, Morrison WR (1971) The structural analysis of wheat flour glycerolipids. Lipids 6(10):768–776. https://doi.org/10.1007/BF02531305

    Article  CAS  PubMed  Google Scholar 

  118. Johnson G, Williams JP (1989) Effect of growth temperature on the biosynthesis of chloroplastic galactosyldiacylglycerol molecular species in Brassica napus leaves. Plant Physiol 91(3):924–929. https://doi.org/10.1104/pp.91.3.924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Chen J, Burke JJ, Xin Z, Xu C, Velten J (2006) Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance. Plant Cell Environ 29(7):1437–1448. https://doi.org/10.1111/j.1365-3040.2006.01527.x

    Article  CAS  PubMed  Google Scholar 

  120. Li Q, Yao ZJ, Mi H (2016) Alleviation of photoinhibition by co-ordination of chlororespiration and cyclic electron flow mediated by NDH under heat stressed condition in tobacco. Front Plant Sci 7:285. https://doi.org/10.3389/fpls.2016.00285

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This paper is supported by all authors. R.X., Y.Z., X.G, H.L and H.L. wrote the manuscript.

Funding

Innovative Research Group Project of the National Natural Science Foundation of China, 31971618, Hai Lu, The 111 Project, B13007, Hai Lu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Lu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

This work was funded by the National Natural Science Foundation of China (No. 31971618) and the 111 Project (Project No. B13007).

Consent to participate

All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, R., Zou, Y., Guo, X. et al. Fatty acid desaturases (FADs) modulate multiple lipid metabolism pathways to improve plant resistance. Mol Biol Rep 49, 9997–10011 (2022). https://doi.org/10.1007/s11033-022-07568-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07568-x

Keywords

Navigation