Skip to main content

Advertisement

Log in

Curcumin sensitizes carboplatin treatment in triple negative breast cancer through reactive oxygen species induced DNA repair pathway

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

As patients with triple-negative breast cancer (TNBC) have a very weak response to hormone inhibition or anti-HER2 therapy, traditional chemotherapy is commonly used in these patients. Recently, carboplatin has been approved for the clinical treatment of TNBC. However, several patients exhibit resistance to carboplatin treatment. Therefore, strategies to enhance the antitumor effect of carboplatin need to be explored. In our study, we investigated the function of curcumin in increasing the response to carboplatin.

Methods and results

MTT and colony formation assays were used to evaluate cell viability after carboplatin and curcumin treatment. In addition, we conducted flow cytometric and Western blot analyses to examine cellular apoptosis. Subsequently, molecular and biochemical experiments were used to explore the mechanism by which curcumin sensitized TNBC to carboplatin treatment. We demonstrated that different TNBC cells responded differently to carboplatin. Low-dose carboplatin killed CAL-51 cells but barely influenced CAL-51-R and MDA-MB-231 cells. To improve the sensitivity of resistant TNBC cells to carboplatin, combined treatment with curcumin was applied and was found to inhibit proliferation and induce apoptosis. Mechanistically, curcumin exerted its anticancer effect by increasing reactive oxygen species (ROS) production, which downregulated the DNA repair protein RAD51, leading to upregulation of γH2AX. As expected, ROS scavenger NAC reversed the inhibitory effect on growth and DNA repair pathway activity mediated by curcumin.

Conclusion

Collectively, our data demonstrate that curcumin sensitizes TNBC to the anticancer effect of carboplatin by increasing ROS-induced DNA damage, thus providing an effective combination treatment strategy for TNBC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support this study are included within the article.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  2. Gluz O, Liedtke C, Gottschalk N, Pusztai L, Nitz U, Harbeck N (2009) Triple-negative breast cancer-current status and future directions. Ann Oncol 20(12):1913–1927

    Article  CAS  PubMed  Google Scholar 

  3. Zhao S, Zuo WJ, Shao ZM, Jiang YZ (2020) Molecular subtypes and precision treatment of triple-negative breast cancer. Ann Transl Med 8(7):499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Yin L, Duan JJ, Bian XW, Yu SC (2020) Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 22(1):61

    Article  PubMed  PubMed Central  Google Scholar 

  5. Denkert C, Liedtke C, Tutt A, von Minckwitz G (2017) Molecular alterations in triple-negative breast cancer-the road to new treatment strategies. Lancet 389(10087):2430–2442

    Article  CAS  PubMed  Google Scholar 

  6. Al-Mahmood S, Sapiezynski J, Garbuzenko OB, Minko T (2018) Metastatic and triple-negative breast cancer: challenges and treatment options. Drug Deliv Transl Res 8(5):1483–1507

    Article  PubMed  PubMed Central  Google Scholar 

  7. Moens S, Zhao P, Baietti MF, Marinelli O, Van Haver D, Impens F et al (2021) The mitotic checkpoint is a targetable vulnerability of carboplatin-resistant triple negative breast cancers. Sci Rep 11(1):3176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mouri A, Yamaguchi O, Miyauchi S, Shiono A, Utsugi H, Nishihara F et al (2019) Combination therapy with carboplatin and paclitaxel for small cell lung cancer. Respir Investig 57(1):34–39

    Article  PubMed  Google Scholar 

  9. Yoneyama T, Tobisawa Y, Yoneyama T, Yamamoto H, Imai A, Hatakeyama S et al (2015) Carboplatin-based combination chemotherapy for elderly patients with advanced bladder cancer. Int J Clin Oncol 20(2):369–374

    Article  CAS  PubMed  Google Scholar 

  10. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M et al (2014) Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol 15(7):747–756

    Article  Google Scholar 

  11. Iwase M, Ando M, Aogi K, Aruga T, Inoue K, Shimomura A et al (2020) Long-term survival analysis of addition of carboplatin to neoadjuvant chemotherapy in HER2-negative breast cancer. Breast Cancer Res Treat 180(3):687–694

    Article  CAS  PubMed  Google Scholar 

  12. Yu KD, Ye FG, He M, Fan L, Ma D, Mo M et al (2020) Effect of adjuvant paclitaxel and carboplatin on survival in women with triple-negative breast cancer: a phase 3 randomized clinical trial. JAMA Oncol 6(9):1390–1396

    Article  PubMed  Google Scholar 

  13. Dai Y, Huang H, Zhu Y, Cheng J, Shen AZ, Liu Y (2020) Combating metastasis of breast cancer cells with a carboplatin analogue containing an all-trans retinoic acid ligand. Dalton Trans 49(16):5039–5043

    Article  CAS  PubMed  Google Scholar 

  14. Tutt A, Tovey H, Cheang MC, Kernaghan S, Kilburn L, Gazinska P et al (2018) A randomised phase III trial of carboplatin compared with docetaxel in BRCA1/2 mutated and pre-specified triple negative breast cancer BRCAness subgroups, the TNT trial. Nat Med 24(5):628–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320

    Article  CAS  PubMed  Google Scholar 

  16. Han HS, Dieras V, Robson M, Palacova M, Marcom PK, Jager A et al (2018) Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study. Ann Oncol 29(1):154–161

    Article  CAS  PubMed  Google Scholar 

  17. Slootbeek PHJ, Duizer ML, van der Doelen MJ, Kloots ISH, Kuppen MCP, Westgeest HM et al (2021) Impact of DNA damage repair defects and aggressive variant features on response to carboplatin-based chemotherapy in metastatic castration-resistant prostate cancer. Int J Cancer 148(2):385–395

    Article  CAS  PubMed  Google Scholar 

  18. Unlu A, Nayir E, Kalenderoglu MD, Kirca O, Ozdogan M (2016) Curcumin (Turmeric) and cancer. JBUON 21(5):1050–1060

    PubMed  Google Scholar 

  19. Zhang L, Yang G, Zhang R, Dong L, Chen H, Bo J et al (2018) Curcumin inhibits cell proliferation and motility via suppression of TROP2 in bladder cancer cells. Int J Oncol 53(2):515–526

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Wan Mohd Tajuddin WNB, Lajis NH, Abas F, Othman I, Naidu R (2019) Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients 11(12):2989

    Article  PubMed Central  Google Scholar 

  21. Mohammed F, Rashid-Doubell F, Taha S, Cassidy S, Fredericks S (2020) Effects of curcumin complexes on MDAMB231 breast cancer cell proliferation. Int J Oncol 57(2):445–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Farghadani R, Naidu R (2021) Curcumin: modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers 13(14):3427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu S, Xu Y, Meng L, Huang L, Sun H (2018) Curcumin inhibits proliferation and promotes apoptosis of breast cancer cells. Exp Ther Med 16(2):1266–1272

    PubMed  PubMed Central  Google Scholar 

  25. Zhou J, Zhu LL, Jiang XM, Wang Y, Wang Y, Wang XW et al (2018) Curcumin increases breast cancer sensitivity to cisplatin by decreasing FEN1expression. Oncotarget 9(13):11268–11278

    Article  Google Scholar 

  26. Hafezi S, Rahmani M (2021) Targeting BCL-2 in cancer: advances, challenges, and perspectives. Cancers (Basel) 13(6):1292

    Article  CAS  Google Scholar 

  27. Wang L, Wang C, Tao Z, Zhao L, Zhu Z, Wu W et al (2019) Curcumin derivative WZ35 inhibits tumor cell growth via ROS-YAP-JNK signaling pathway in breast cancer. J Exp Clin Cancer Res 38(1):460

    Article  PubMed  PubMed Central  Google Scholar 

  28. Najafi S, Payandeh M, Sadeghi M, Shafaei V, Shojaiyan F, Abbasvandi F (2017) Phase II study of adjuvant docetaxel and carboplatin with/without doxorubicin and cyclophosphamide in triple negative breast cancer: a randomised controlled clinical trial. Contemp Oncol (Pozn) 21(1):83–89

    CAS  Google Scholar 

  29. Zhao H, Yang Q, Hu Y, Zhang J (2018) Antitumor effects and mechanisms of olaparib in combination with carboplatin and BKM120 on human triplenegative breast cancer cells. Oncol Rep 40(6):3223–3234

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Wen CJ, Fu LJ, Huang JF, Dai Y, Wang B, Xu G et al (2019) Curcumin reverses doxorubicin resistance via inhibition the efflux function of ABCB4 in doxorubicin-resistant breast cancer cells. Mol Med Rep 19(6):5162–5168

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang YF, Zhu DJ, Chen XW, Chen QK, Luo ZT, Liu CC et al (2017) Curcumin enhances the effects of irinotecan on colorectal cancer cells through the generation of reactive oxygen species and activation of the endoplasmic reticulum stress pathway. Oncotarget 8(25):40264–40275

    Article  PubMed  PubMed Central  Google Scholar 

  32. Toden S, Okugawa Y, Jascur T, Wodarz D, Komarova NL, Buhrmann C et al (2015) Curcumin mediates chemosensitization to 5-fluorouracil through miRNA-induced suppression of epithelial-to-mesenchymal transition in chemoresistant colorectal cancer. Carcinogenesis 36(3):355–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hossain MM, Banik NL, Ray SK (2012) Synergistic anti-cancer mechanisms of curcumin and paclitaxel for growth inhibition of human brain tumor stem cells and LN18 and U138MG cells. Neurochem Int 61(7):1102–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mlcouskova J, Stepankova J, Brabec V (2012) Antitumor carboplatin is more toxic in tumor cells when photoactivated: enhanced DNA binding. J Biol Inorg Chem 17(6):891–898

    Article  CAS  PubMed  Google Scholar 

  35. Mani C, Jonnalagadda S, Lingareddy J, Awasthi S, Gmeiner WH, Palle K (2019) Prexasertib treatment induces homologous recombination deficiency and synergizes with olaparib in triple-negative breast cancer cells. Breast Cancer Res 21(1):104

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jia Y, Song Y, Dong G, Hao C, Zhao W, Li S et al (2019) Aberrant regulation of RAD51 promotes resistance of neoadjuvant endocrine therapy in ER-positive breast cancer. Sci Rep 9(1):12939

    Article  PubMed  PubMed Central  Google Scholar 

  37. Lee JO, Kang MJ, Byun WS, Kim SA, Seo IH, Han JA et al (2019) Metformin overcomes resistance to cisplatin in triple-negative breast cancer (TNBC) cells by targeting RAD51. Breast Cancer Res 21(1):115

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bakewell S, Conde I, Fallah Y, McCoy M, Jin L, Shajahan-Haq AN (2020) Inhibition of DNA repair pathways and induction of ROS are potential mechanisms of action of the small molecule inhibitor BOLD-100 in breast cancer. Cancers 12(9):2647

    Article  CAS  PubMed Central  Google Scholar 

  39. Deck LM, Hunsaker LA, Vander Jagt TA, Whalen LJ, Royer RE, Vander Jagt DL (2018) Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem 143:854–865

    Article  CAS  PubMed  Google Scholar 

  40. Zhang J, Wang X, Vikash V, Ye Q, Wu D, Liu Y et al (2016) ROS and ROS-mediated cellular signaling. Oxid Med Cell Longev 2016:4350965

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moloney JN, Cotter TG (2018) ROS signalling in the biology of cancer. Semin Cell Dev Biol 80:50–64

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

N/A.

Funding

This work was supported by the research grants from the National Natural Science Foundation of China (Grants Number: 81901567), the Natural Science Foundation of Hubei Province (Grants Number: 2018CFB112), the Natural Science Foundation of Hubei Provincial Department of Education (Q20202105), the Cultivating Project for Young Scholar at Hubei University of Medicine (Grants Number: 2017QDJZR07), the Scientific and Technological Project of Shiyan City of Hubei Province (Grants Number: 19Y03).

Author information

Authors and Affiliations

Authors

Contributions

GW and PD conceived and designed the experiments. GW, ZW and FL performed the experiments. GW, PD and ZW analyzed the data. GW and PD contributed reagents and materials. GW, PD and ZW wrote the manuscript. All the authors have approved the final version of this manuscript.

Corresponding author

Correspondence to Genjin Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent to participate

Not applicable.

Consent for publication

All authors consent to the publication of this manuscript.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Duan, P., Wei, Z. et al. Curcumin sensitizes carboplatin treatment in triple negative breast cancer through reactive oxygen species induced DNA repair pathway. Mol Biol Rep 49, 3259–3270 (2022). https://doi.org/10.1007/s11033-022-07162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-022-07162-1

Keywords

Navigation