Skip to main content
Log in

Antitumor carboplatin is more toxic in tumor cells when photoactivated: enhanced DNA binding

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Carboplatin, an analogue of “classical” cis-diamminedichloridoplatinum(II) (cisplatin), is a widely used second-generation platinum anticancer drug. Cytotoxicity of cisplatin and carboplatin is mediated by platinum–DNA adducts. Markedly higher concentrations of carboplatin are required, and the rate of adduct formation is considerably slower. The reduced toxic effects in tumor cells and a more acceptable side-effect profile are attributable to the lower reactivity of carboplatin with nucleophiles, since the cyclobutanedicarboxylate ligand is a poorer leaving group than the chlorides in cisplatin. Recently, platinum complexes were shown to be particularly attractive as potential photochemotherapeutic anticancer agents. Selective photoactivation of platinum complexes by irradiation of cancer cells may avoid enhancement of toxic side-effects, but may increase toxicity selectively in cancer cells and extend the application of photoactivatable platinum complexes to resistant cells and to a wider range of cancer types. Therefore, it was of interest to examine whether carboplatin can be affected by irradiation with light to the extent that its DNA binding and cytotoxic properties are altered. We have found that carboplatin is converted to species capable of enhanced DNA binding by UVA irradiation and consequently its toxicity in cancer cells is markedly enhanced. Recent advances in laser and fiber-optic technologies make it possible to irradiate also internal organs with light of highly defined intensity and wavelength. Thus, carboplatin is a candidate for use in photoactivated cancer chemotherapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CBDCA:

Cyclobutanedicarboxylate

CL:

Cross-link

CT:

Calf thymus

EtBr:

Ethidium bromide

FAAS:

Flameless atomic absorption spectroscopy

IC50 :

Compound concentrations that produce 50 % cell growth inhibition

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

[PtCl(dien)]Cl:

Chloridodiethylenetriamineplatinum(II) chloride

References

  1. Highley MS, Calvert AH (2000) In: Kelland LR, Farrell NP (eds) Platinum-based drugs in cancer therapy. Humana, Totowa, pp 171–194

    Chapter  Google Scholar 

  2. Lokich J (2001) Cancer Invest 19:756–760

    Article  PubMed  CAS  Google Scholar 

  3. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  PubMed  CAS  Google Scholar 

  4. Brabec V (2002) Prog Nucleic Acid Res Mol Biol 71:1–68

    Article  PubMed  CAS  Google Scholar 

  5. Kelland L (2007) Nat Rev Cancer 7:573–584

    Article  PubMed  CAS  Google Scholar 

  6. Pavelka M, Lucas MFA, Russo N (2007) Chem Eur J 13:10108–10116

    Article  PubMed  CAS  Google Scholar 

  7. Frey U, Ranford JD, Sadler PJ (1993) Inorg Chem 32:1333–1340

    Article  CAS  Google Scholar 

  8. Hay RW, Miller S (1998) Polyhedron 17:2337–2343

    Article  CAS  Google Scholar 

  9. Knox RJ, Friedlos F, Lydall DA, Roberts JJ (1986) Cancer Res 46:1972–1979

    PubMed  CAS  Google Scholar 

  10. Blommaert FA, van Dijk-Knijnenburg HCM, Dijt FJ, Denengelse L, Baan RA, Berends F, Fichtinger-Schepman AMJ (1995) Biochemistry 34:8474–8480

    Article  PubMed  CAS  Google Scholar 

  11. Rixe O, Ortuzar W, Alvarez M, Parker R, Reed E, Paull K, Fojo T (1996) Biochem Pharmacol 52:1855–1865

    Article  PubMed  CAS  Google Scholar 

  12. Boulikas T, Vougiouka M (2003) Oncol Rep 10:1663–1682

    PubMed  CAS  Google Scholar 

  13. Terheggen PMAB, Begg AC, Emondt JY, Dubbelman R, Floot BGJ, Denengelse L (1991) Br J Cancer 63:195–200

    Article  PubMed  CAS  Google Scholar 

  14. Blommaert FA, Michael C, Terheggen PMAB, Muggia FM, Kortes V, Schornagel JH, Hart AAM, den Engelse L (1993) Cancer Res 53:5669–5675

    PubMed  CAS  Google Scholar 

  15. Gill I, Muggia FM, Terheggen PMAB, Michael C, Parker RJ, Kortes V, Grunberg S, Christian MC, Reed E, den Engelse L (1991) Ann Oncol 2:115–121

    PubMed  CAS  Google Scholar 

  16. Natarajan G, Malathi R, Holler E (1999) Biochem Pharmacol 58:1625–1629

    Article  PubMed  CAS  Google Scholar 

  17. Tonetti M, Giovine M, Gasparini A, Benatti U, De Flora A (1993) Biochem Pharmacol 46:1377–1383

    Article  PubMed  CAS  Google Scholar 

  18. Kleine M, Wolters D, Sheldrick WS (2003) J Inorg Biochem 97:354–363

    Article  PubMed  CAS  Google Scholar 

  19. Bednarski PJ, Mackay FS, Sadler P (2007) Anticancer Agents Med Chem 7:75–93

    Article  PubMed  CAS  Google Scholar 

  20. Heringova P, Woods J, Mackay FS, Kasparkova J, Sadler PJ, Brabec V (2006) J Med Chem 49:7792–7798

    Article  PubMed  CAS  Google Scholar 

  21. Brabec V, Palecek E (1976) Biophys Chem 4:76–92

    Article  Google Scholar 

  22. Brabec V, Palecek E (1970) Biophysik 6:290–300

    Article  PubMed  CAS  Google Scholar 

  23. Butour JL, Macquet JP (1977) Eur J Biochem 78:455–463

    Article  PubMed  CAS  Google Scholar 

  24. Butour JL, Alvinerie P, Souchard JP, Colson P, Houssier C, Johnson NP (1991) Eur J Biochem 202:975–980

    Article  PubMed  CAS  Google Scholar 

  25. Novakova O, Malina J, Kasparkova J, Halamikova A, Bernard V, Intini F, Natile G, Brabec V (2009) Chem Eur J 15:6211–6221

    Article  PubMed  CAS  Google Scholar 

  26. Bugarcic T, Novakova O, Halamikova A, Zerzankova L, Vrana O, Kasparkova J, Habtemariam A, Parsons S, Sadler PJ, Brabec V (2008) J Med Chem 51:5310–5319

    Article  PubMed  CAS  Google Scholar 

  27. Liskova B, Zerzankova L, Novakova O, Kostrhunova H, Travnicek Z, Brabec V (2012) Chem Res Toxicol 25:500–509

    Article  PubMed  CAS  Google Scholar 

  28. Brabec V, Vrana O, Novakova O, Kleinwachter V, Intini FP, Coluccia M, Natile G (1996) Nucleic Acids Res 24:336–341

    Article  PubMed  CAS  Google Scholar 

  29. Prokop R, Kasparkova J, Novakova O, Marini V, Pizarro AM, Navarro-Ranninger C, Brabec V (2004) Biochem Pharmacol 67:1097–1109

    Article  PubMed  CAS  Google Scholar 

  30. Fichtinger-Schepman AMJ, Van der Veer JL, Den Hartog JHJ, Lohman PHM, Reedijk J (1985) Biochemistry 24:707–713

    Article  PubMed  CAS  Google Scholar 

  31. Zakovska A, Novakova O, Balcarova Z, Bierbach U, Farrell N, Brabec V (1998) Eur J Biochem 254:547–557

    Article  PubMed  CAS  Google Scholar 

  32. Brabec V, Kasparkova J, Vrana O, Novakova O, Cox JW, Qu Y, Farrell N (1999) Biochemistry 38:6781–6790

    Article  PubMed  CAS  Google Scholar 

  33. Zerzankova L, Suchankova T, Vrana O, Farrell NP, Brabec V, Kasparkova J (2010) Biochem Pharmacol 79:112–121

    Article  PubMed  CAS  Google Scholar 

  34. Brabec V, Leng M (1993) Proc Natl Acad Sci USA 90:5345–5349

    Article  PubMed  CAS  Google Scholar 

  35. Farrell N, Qu Y, Feng L, Van Houten B (1990) Biochemistry 29:9522–9531

    Article  PubMed  CAS  Google Scholar 

  36. Perumareddi JR, Adamson AW (1968) J Phys Chem 72:414–420

    Article  CAS  Google Scholar 

  37. Fry HC, Deal C, Barr E, Cummings SD (2002) J Photochem Photobiol A Chem 150:37–40

    Article  CAS  Google Scholar 

  38. Mackay FS, Woods JA, Heringova P, Kasparkova J, Pizarro AM, Moggach SA, Parsons S, Brabec V, Sadler PJ (2007) Proc Natl Acad Sci USA 104:20743–20748

    Article  PubMed  CAS  Google Scholar 

  39. McWhinney SR, Goldberg RM, McLeod HL (2009) Mol Cancer Ther 8:10–16

    Article  PubMed  CAS  Google Scholar 

  40. Heinzlef O, Lotz J-P, Roullet E (1998) J Neurol Neurosurg Psychiatry 64:667–669

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Science Foundation (grants 301/09/H004 and P301/10/0598).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktor Brabec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mlcouskova, J., Stepankova, J. & Brabec, V. Antitumor carboplatin is more toxic in tumor cells when photoactivated: enhanced DNA binding. J Biol Inorg Chem 17, 891–898 (2012). https://doi.org/10.1007/s00775-012-0906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0906-z

Keywords

Navigation