Skip to main content
Log in

Development and characterization of microsatellite markers in the small Indian mongoose (Urva auropunctata)

  • Short Communication
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

The small Indian mongoose (Urva auropunctata) is one of the world’s worst invasive alien species and eradication programs are ongoing worldwide. The development of individual and sex identification markers will improve their management.

Methods and results

We searched for novel mongoose microsatellite markers using genome-wide screening and identified 115,265 tetra-nucleotide repeat loci. Of 96 loci tested, 17 were genotyped in 28 mongooses from the Okinawa population. The genetic diversity analysis showed that the average expected and observed heterozygosity and number of alleles were 0.55, 0.56, and 2.94, respectively. Of 17 loci, one deviated from Hardy–Weinberg equilibrium and six loci pairs were likely linked to each other. However, we succeed in identifying all individuals using all of the microsatellite loci. The novel sex identification markers worked successfully in a test using sex known samples.

Conclusion

Our novel microsatellite and sex identification markers should be useful in studies of individual identification and population genetics of the mongoose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Gilchrist JS, Jennings AP, Veron G, Cavallini P (2009) Family Herpestidae (Mongooses). In: Wilson DE, Mittermeier RA (eds) Handbook of the mammals of the World Carnivores, vol 1. Lynx Editions, Barcelona, pp 222–329

    Google Scholar 

  2. Barun A, Hanson C (2011) A review of small Indian mongoose management and eradications on islands. In: Veitch CR, Clout MN, Towns DR (eds) Island invasives: Eradication and management. Gland, Aukland, pp 17–25

    Google Scholar 

  3. Louppe V, Leroy B, Herrel A, Veron G (2020) The globally invasive small Indian mongoose Urva auropunctata is likely to spread with climate change. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-64502-6

    Article  CAS  Google Scholar 

  4. Watari Y (2019) Roadmap and checklist of invasive species management: Learning from the mongoose eradication project on Amami-Oshima. Japanese J Ornithol 68:263–272. https://doi.org/10.3838/jjo.68.263

    Article  Google Scholar 

  5. Watari Y, Nishijima S, Fukasawa M et al (2013) Evaluating the “recovery level” of endangered species without prior information before alien invasion. Ecol Evol 3:4711–4721. https://doi.org/10.1002/ece3.863

    Article  PubMed  PubMed Central  Google Scholar 

  6. Fukasawa K, Miyashita T, Hashimoto T et al (2013) Differential population responses of native and alien rodents to an invasive predator, habitat alteration and plant masting. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2013.2075

    Article  Google Scholar 

  7. Kawamura K, Kaieda S, Kato M, Kobayashi S (2018) Invasion genetics of nutria (Myocastor coypus) in Okayama, Japan, inferred from mitochondrial and microsatellite markers. Eur J Wildl Res. https://doi.org/10.1007/s10344-018-1185-y

    Article  Google Scholar 

  8. Wostenberg DJ, Hopken MW, Shiels AB, Piaggio AJ (2019) Using DNA to Identify the Source of Invasive Mongooses, Herpestes auropunctatus (Carnivora: Herpestidae) Captured on Kaua‘i. Hawaiian Islands Pacific Sci 73:215. https://doi.org/10.2984/73.2.3

    Article  Google Scholar 

  9. Von Thaden A, Cocchiararo B, Jarausch A et al (2017) Assessing SNP genotyping of noninvasively collected wildlife samples using microfluidic arrays. Sci Rep 7:1–13. https://doi.org/10.1038/s41598-017-10647-w

    Article  CAS  Google Scholar 

  10. Thulin C-G, Gyllenstrand N, Mccracken G, Simberloff D (2002) Highly variable microsatellite loci for studies of introduced populations of the small Indian mongoose (Herpestes javanicus). Mol Ecol Notes 2:453–455. https://doi.org/10.1046/j.1471-8278.2002.00275.x

    Article  CAS  Google Scholar 

  11. Barun A, Niemiller ML, Fitzpatrick BM et al (2013) Can genetic data confirm or refute historical records? The island invasion of the small Indian mongoose (Herpestes auropunctatus). Biol Invasions 15:2243–2251. https://doi.org/10.1007/s10530-013-0447-6

    Article  Google Scholar 

  12. Chen S, Zhou Y, Chen Y, Gu J (2018) Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Google Scholar 

  13. Vasimuddin M, Misra S, Li H, Aluru S (2019) Efficient Architecture-Aware Acceleration of BWA-MEM for Multicore Systems. In: 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, pp 314–324. https://doi.org/10.1109/IPDPS.2019.00041

    Chapter  Google Scholar 

  14. Patou ML, Mclenachan PA, Morley CG et al (2009) Molecular phylogeny of the Herpestidae (Mammalia, Carnivora) with a special emphasis on the Asian Herpestes. Mol Phylogenet Evol 53:69–80. https://doi.org/10.1016/j.ympev.2009.05.038

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Du L, Zhang C, Liu Q et al (2018) Krait: An ultrafast tool for genome-wide survey of microsatellites and primer design. Bioinformatics 34:681–683. https://doi.org/10.1093/bioinformatics/btx665

    Article  CAS  PubMed  Google Scholar 

  17. Guichoux E, Lagache L, Wagner S et al (2011) Current trends in microsatellite genotyping. Mol Ecol Resour 11:591–611. https://doi.org/10.1111/j.1755-0998.2011.03014.x

    Article  CAS  PubMed  Google Scholar 

  18. Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. https://doi.org/10.1093/nar/gks596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. https://doi.org/10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  20. Culley TM, Stamper TI, Stokes RL et al (2013) An efficient technique for primer development and application that integrates fluorescent labeling and multiplex PCR. Appl Plant Sci 1:1300027. https://doi.org/10.3732/apps.1300027

    Article  Google Scholar 

  21. Murata C, Sawaya H, Nakata K et al (2016) The cryptic Y-autosome translocation in the small Indian mongoose, Herpestes auropunctatus, revealed by molecular cytogenetic approaches. Chromosoma 125:807–815. https://doi.org/10.1007/s00412-015-0572-3

    Article  PubMed  Google Scholar 

  22. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J Hered 86:248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573

    Article  Google Scholar 

  23. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x

    Article  CAS  Google Scholar 

  24. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. https://doi.org/10.1046/j.1471-8286.2002.00228.x-i2

    Article  Google Scholar 

  25. Kosei I (1966) Distribution and eating habits of mongoose in Okinawa. Okinawa Agric 5:39–44

    Google Scholar 

Download references

Acknowledgements

We are grateful to Mr. Katsushi Nakata, Dr. Ryoji Fukuhara, Yambaru Mongoose Busters and Yambaru Wildlife Center of the Ministry of Environment, Japan for providing samples, and Dr. Gohta Kinoshita, Ms. Yu Endo and Mr. Shinta Gima for their technical advices and supports. Computations were partially performed on the NIG supercomputer at ROIS National Institute of Genetics.

Funding

This research was performed by the Environment Research and Technology Development Fund (JPMEERF20204006) of the Environmental Restoration and Conservation Agency of Japan.

Author information

Authors and Affiliations

Authors

Contributions

TS and TJ contributed to the research idea and manuscript writing. TS contributed to experimental design and data analysis.

Corresponding author

Correspondence to Takamichi Jogahara.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Consent to participate

All the authors listed have approved the manuscript that is enclosed.

Consent for publication

The manuscript is approved by all authors for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 159 kb)

Supplementary file2 (pdf 1144 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sato, T., Jogahara, T. Development and characterization of microsatellite markers in the small Indian mongoose (Urva auropunctata). Mol Biol Rep 48, 7029–7034 (2021). https://doi.org/10.1007/s11033-021-06655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06655-9

Keywords

Navigation