Skip to main content
Log in

Molecular detection of Shiga toxin-producing Escherichia coli (STEC) O157 in sheep, goats, cows and buffaloes

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Shiga toxin-producing E. coli (STEC) are important foodborne pathogens that causing serious public health consequences worldwide. The present study aimed to estimate the prevalence ratio and to identify the zoonotic potential of E. coli O157 isolates in slaughtered adult sheep, goats, cows and buffaloes.

Materials and methods

A total of 400 Recto-anal samples were collected from two targeted sites Rawalpindi and Islamabad. Among them, 200 samples were collected from the slaughterhouse of Rawalpindi included sheep (n = 75) and goats (n = 125). While, 200 samples were collected from the slaughterhouse of Islamabad included cows (n = 120) and buffalos (n = 80). All samples were initially processed in buffered peptone water and then amplified by conventional PCR. Samples positive for E. coli O157 were then streaked onto SMAC media plates. From each positive sample, six different Sorbitol fermented pink-colored colonies were isolated and analyzed again via conventional PCR to confirm the presence of rfbE O157 gene. Isolates positive for rfbE O157 gene were then further analyzed by multiplex PCR for the presence of STEC other virulent genes (sxt1, stx2, eae and ehlyA) simultaneously.

Results

Of 400 RAJ samples only 2 (0.5%) showed positive results for E. coli O157 gene, included sheep 1/75 (1.33%) and buffalo 1/80 (1.25%). However, goats (n = 125) and cows (n = 120) found negative for E. coli O157. Only 2 isolates from each positive sample of sheep (1/6) and buffalo (1/6) harbored rfbE O157 genes, while five isolates could not. The rfbE O157 isolate (01) of sheep sample did not carry any of STEC genes, while the rfbE O157 isolate (01) of buffalo sample carried sxt1, stx2, eae and ehlyA genes simultaneously.

Conclusion

It was concluded that healthy adult sheep and buffalo are possibly essential carriers of STEC O157. However, rfbE O157 isolate of buffalo RAJ sample carried 4 STEC virulent genes, hence considered an important source of STEC infection to humans and environment which should need to devise proper control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig1
Fig 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chileshe J, Ateba CN (2013) Molecular identification of Escherichia coli O145: H28 from beef in the North West Province, South Africa. Life Sci J 10(4):1171–1176

    Google Scholar 

  2. Karmali MA, Gannon V, Sargeant JM (2010) Verocytotoxin-producing Escherichia coli (VTEC). Vet Microbiol 140(3–4):360–370

    CAS  PubMed  Google Scholar 

  3. Sekhar MS, Sharif NM, Rao TS (2017) Serotypes of sorbitol-positive shiga toxigenic Escherichia coli (SP-STEC) isolated from freshwater fish. Int J Fish Aquatic Sci 5:503–505

    Google Scholar 

  4. Oporto B, Ocejo M, Alkorta M, Marimón JM, Montes M, Hurtado A (2019) Zoonotic approach to Shiga toxin-producing Escherichia coli: integrated analysis of virulence and antimicrobial resistance in ruminants and humans. Epidemiol Infect. https://doi.org/10.1017/S0950268819000566

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hunt JM (2010) Shiga toxin–producing Escherichia coli (STEC). Clin Lab Med 30(1):21–45

    PubMed  PubMed Central  Google Scholar 

  6. Fernandez TF (2008) E. coli O157: H7. Vet World 1(3):83

    Google Scholar 

  7. Pintara A, Jennison A, Rathnayake IU, Mellor G, Huygens F (2020) Core and accessory genome comparison of Australian and international strains of O157 Shiga toxin-producing Escherichia coli. Front Microbiol 11:2162

    Google Scholar 

  8. Mian AH, Fatima T, Qayyum S, Ali K, Shah R, Ali NM (2020) A study of bacterial profile and antibiotic susceptibility pattern found in drinking water at district Mansehra, Pakistan. Appl Nanosci 10:5435–5439. https://doi.org/10.1007/s13204-020-01411-0

    Article  CAS  Google Scholar 

  9. Xia X, Meng J, McDermott PF, Ayers S, Blickenstaff K, Tran TT, Zhao S (2010) Presence and characterization of Shiga toxin-producing Escherichia coli and other potentially diarrheagenic E. coli strains in retail meats. Appl Environ Microbiol 76(6):1709–1717

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Elson R, Grace K, Vivancos R, Jenkins C, Adak GK, O’Brien SJ, Lake IR (2018) A spatial and temporal analysis of risk factors associated with sporadic Shiga toxin-producing Escherichia coli O157 infection in England between 2009 and 2015. Epidemiol Infect 146(15):1928–1939

    PubMed  PubMed Central  Google Scholar 

  11. Persad AK, Lejeune JT (2015) Animal reservoirs of Shiga toxin-producing Escherichia coli. Enterohemorrhagic Escherichia coli and other shiga toxin-producing E. coli. ASM Press, Washington, DC

    Google Scholar 

  12. Rigobelo EC, Santo E, Marin JM (2008) Beef carcass contamination by Shiga toxin-producing Escherichia coli strains in an abattoir in Brazil: characterization and resistance to antimicrobial drugs. Foodborne Pathog Dis 5:811–817

    CAS  PubMed  Google Scholar 

  13. Joris A, Vanrompay D, Verstraete K, De Reu K, De Zutter L (2012) Enterohemorrhagic Escherichia coli with particular attention to the German outbreak strain O104: H4. VDT 81(1):3–10

    Google Scholar 

  14. Kiranmayi C, Krishnaiah N, Mallika EN (2010) Escherichia coli O157: H7-an emerging pathogen in foods of animal origin. Vet World 3(8):382

    Google Scholar 

  15. Mughini-Gras L, Van Pelt W, Van der Voort M, Heck M, Friesema I, Franz E (2018) Attribution of human infections with Shiga toxin-producing Escherichia coli (STEC) to livestock sources and identification of source-specific risk factors, The Netherlands (2010–2014). Zoonoses Public Health 65(1):e8–e22

    CAS  PubMed  Google Scholar 

  16. Rahimi E, Momtaz H, Anari MMH, Alimoradi M, Momen M, Riahi M (2012) Isolation and genomic characterization of Escherichia coli O157: NM and Escherichia coli O157: H7 in minced meat and some traditional dairy products in Iran. Afr J Biotech 11(9):2328–2332

    CAS  Google Scholar 

  17. Kim JS, Lee MS, Kim JH (2020) Recent updates on outbreaks of Shiga toxin-producing Escherichia coli and its potential reservoirs. Front Cell Infect Microbiol 10:273

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Anonymous (2012) Summary of notifiable diseases-the United States, 2010. MMWR Morb Mortal Wkly Rep 59:1–111

    Google Scholar 

  19. Ecdc E (2013) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2011. EFSA J 11:3129

    Google Scholar 

  20. On S, Lim E, Lopez L, Cressey P, Pirie R (2011) Annual report concerning foodborne disease in New Zealand. Enviromental Science and Research Limited (ESR), Christchurch, New Zealand, p 130

  21. Carbonari CC, Fittipaldi N, Teatero S, Athey TB, Pianciola L, Masana M, Melano RG, Rivas M, Chinen I (2016) Whole-genome sequencing applied to the molecular epidemiology of shiga toxin-producing Escherichia coli O157:H7 in Argentina. Genome Announc 4:10. https://doi.org/10.1128/genomeA.01341-16

    Article  Google Scholar 

  22. Qayyum S, Basharat S, Mian AH, Qayum S, Ali M, Changsheng P, Shahzad M (2020) Isolation, identification and antibacterial study of pigmented bacteria. Appl Nanosci 10:4495–4503. https://doi.org/10.1007/s13204-020-01363-5

    Article  CAS  Google Scholar 

  23. Qayyum S, Nasir A, Mian AH, Rehman S, Qayum S, Siddiqui MF, Kalsoom U (2020) Extraction of peroxidase enzyme from different vegetables for biodetoxification of vat dyes. Appl Nanosci 10:5191–5199. https://doi.org/10.1007/s13204-020-01348-4

    Article  CAS  Google Scholar 

  24. Group OW (2012) Monitoring the incidence and causes of diseases potentially transmitted by food in Australia: annual report of the OzFoodNet network, 2010. Commun Dis Intell Q Rep 36:E213

    Google Scholar 

  25. Ali NH, Farooqui A, Khan A, Khan AY, Kazmi SU (2010) Microbial contamination of raw meat and its environment in retail shops in Karachi, Pakistan. J Infect Dev Ctries 4:382–388

    Google Scholar 

  26. Fatima T, Mian AH, Khan Z, Khan AM, Anwar F, Tariq A, Sardar M (2020) Citrus sinensis a potential solution against superbugs. Appl Nanosci 10:5077–5083. https://doi.org/10.1007/s13204-020-01408-9

    Article  CAS  Google Scholar 

  27. Irshad H, Binyamin I, Ahsan A, Riaz A, Shahzad MA, Qayyum M, Yousaf A (2020) Occurrence and molecular characterization of Shiga Toxin-producing Escherichia coli isolates recovered from cattle and goat meat obtained from retail meat shops in Rawalpindi and Islamabad, Pakistan. Pak Vet J 40(3):10. https://doi.org/10.29261/pakvetj/2020.045

    Article  CAS  Google Scholar 

  28. Mohsin M, Haque A, Ali A, Sarwar Y, Bashir S, Tariq A, Afzal A, Iftikhar T, Saeed MA (2010) Effects of ampicillin, gentamicin, and cefotaxime on the release of Shiga Toxins from Shiga Toxin-producing Escherichia coli isolated during a diarrhea episode in Faisalabad, Pakistan. Foodborne Pathog Dis 7:85–90

    CAS  PubMed  Google Scholar 

  29. Razzaq A, Shamsi S, Nawaz A, Nawaz A, Ali A, Malik K (2016) The occurrence of Shiga toxin producing E. coli from raw milk. Pure Appl Biol 5(2):270–276

    CAS  Google Scholar 

  30. Shahzad K, Muhammad K, Sheikh A, Yaqub T, Rabbani M, Hussain T, Anjum A, Anees M (2013) Isolation and molecular characterization of Shiga toxin producing E. coli O157. J Anim Plant Sci 23:1618–1621

    CAS  Google Scholar 

  31. Jeshveen SS, Chai LC, Pui CF, Son R (2012) Optimization of multiplex PCR conditions for rapid detection of Escherichia coli O157: H7 virulence genes. Int Food Res J 19(2)

  32. Radu S, Ling OW, Rusul G, Karim MIA, Nishibuchi M (2001) Detection of Escherichia coli O157: H7 by multiplex PCR and their characterization by plasmid profiling, antimicrobial resistance, RAPD and PFGE analyses. J Microbiol Methods 46:131–139

    CAS  PubMed  Google Scholar 

  33. Irshad H, Cookson A, Hotter G, Besser T, On S, French N (2012) Epidemiology of Shiga toxin-producing Escherichia coli O157 in very young calves in the North Island of New Zealand. N Z Vet J 60:21–26

    CAS  PubMed  Google Scholar 

  34. Fortin NY, Mulchandani A, Chen W (2001) Use of real-time polymerase chain reaction and molecular beacons for the detection of Escherichia coli O157: H7. Anal Biochem 289:281–288

    CAS  PubMed  Google Scholar 

  35. Perelle S, Dilasser F, Grout J, Fach P (2004) Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157: H7, associated with the world’s most frequent clinical cases. Mol Cell Probes 18:185–192

    CAS  PubMed  Google Scholar 

  36. Stromberg ZR, Redweik GA, Mellata M (2018) Detection, prevalence, and pathogenicity of non-O157 Shiga toxin-producing Escherichia coli from cattle hides and carcasses. Foodborne Pathog Dis 15(3):119–131

    CAS  PubMed  Google Scholar 

  37. Sharma VK, Dean-Nystrom EA (2003) Detection of enterohemorrhagic Escherichia coli O157: H7 by using a multiplex real-time PCR assay for genes encoding intimin and Shiga toxins. Vet Microbiol 93:247–260

    CAS  PubMed  Google Scholar 

  38. Mori L, Perales R, Rodríguez J, Shiva C, Koga Y, Choquehuanca G, Palacios C (2014) Molecular identification of Shiga-toxin producing and enteropathogenic Escherichia coli (STEC and EPEC) in diarrheic and healthy young alpacas. Adv Microbiol 4:360

    CAS  Google Scholar 

  39. Bonardi S, Alpigiani I, Tozzoli R, Vismarra A, Zecca V, Greppi C, Brindani F (2015) Shiga toxin-producing Escherichia coli O157, O26 and O111 in cattle faeces and hides in Italy. Vet Record Open. https://doi.org/10.1136/vetreco-2014-000061

    Article  Google Scholar 

  40. Govaris A, Angelidis AS, Katsoulis K, Pournaras S (2011) Occurrence, virulence genes and antimicrobial resistance of Escherichia coli O157 in bovine, caprine, ovine and porcine carcasses in Greece. J Food Saf 31(2):242–249

    Google Scholar 

  41. Pinaka O, Pournaras S, Mouchtouri V, Plakokefalos E, Katsiaflaka A, Kolokythopoulou F, Hadjichristodoulou C (2013) Shiga toxin-producing Escherichia coli in Central Greece: prevalence and virulence genes of O157: H7 and non-O157 in animal feces, vegetables, and humans. Eur J Clin Microbiol Infect Dis 32(11):1401–1408

    CAS  PubMed  Google Scholar 

  42. Akanbi BO, Mbah IP, Kerry PC (2011) Prevalence of Escherichia coli O157: H7 on hides and faeces of ruminants at slaughter in two major abattoirs in Nigeria. Lett Appl Microbiol 53(3):336–340

    CAS  PubMed  Google Scholar 

  43. Zarei M, Basiri N, Jamnejad A, Eskandari MH (2013) Prevalence of Escherichia coli O157: H7, Listeria monocytogenes and Salmonella spp. in beef, buffalo and lamb using multiplex PCR. Jundishapur J Microbiol 6(8)

  44. Al-Ajmi D, Rahman S, Banu S (2020) Occurrence, virulence genes, and antimicrobial profiles of Escherichia coli O157 isolated from ruminants slaughtered in Al Ain, United Arab Emirates. BMC Microbiol 20(1):1–10

    Google Scholar 

  45. McPherson AS, Dhungyel OP, Ward MP (2015) Comparison of recto-anal mucosal swab and faecal culture for the detection of Escherichia coli O157 and identification of super-shedding in a mob of Merino sheep. Epidemiol Infect 143(13):2733–2742

    CAS  PubMed  Google Scholar 

  46. Rice DH, Sheng HQ, Wynia SA, Hovde CJ (2003) Recto anal mucosal swab culture is more sensitive than fecal culture and distinguishes Escherichia coli O157: H7-colonized cattle and those transiently shedding the same organism. J Clin Microbiol 41(11):4924

    PubMed  PubMed Central  Google Scholar 

  47. Williams KJ, Ward MP, Dhungyel OP (2015) Longitudinal study of Escherichia coli O157 shedding and super shedding in dairy heifers. J Food Prot 78(4):636–642

    CAS  PubMed  Google Scholar 

  48. De Boer E, Heuvelink AE (2000) Methods for the detection and isolation of Shiga toxin-producing Escherichia coli. J Appl Microbiol 88(S1):133S-143S

    Google Scholar 

  49. Vimont A, Vernozy-Rozand C, Delignette-Muller ML (2006) Isolation of E. coli O157: H7 and non-O157 STEC in different matrices: review of the most commonly used enrichment protocols. Lett Appl Microbiol 42(2):102–108

    CAS  PubMed  Google Scholar 

  50. Conrad CC, Stanford K, McAllister TA, Thomas J, Reuter T (2016) Competition during enrichment of pathogenic Escherichia coli may result in culture bias. Facets 1(1):114–126

    Google Scholar 

  51. Wang F, Yang Q, Kase JA, Meng J, Clotilde LM, Lin A, Ge B (2013) Current trends in detecting non-O157 Shiga toxin–producing Escherichia coli in food. Foodborne Pathog Dis 10(8):665–677

    PubMed  Google Scholar 

  52. EFSA Biohaz Panel, Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bover-Cid S, Chemaly M, Davies R, Cesare AD, Herman L, Hilbert F, Skandamis P, Suffredini E, Jenkins C, Pires SM, Morabito S, Niskanen T, Scheutz F, Felicio MTDS, Messens W, Bolton D (2020) Pathogenicity assessment of Shiga toxin-producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 18(1):e05967. https://doi.org/10.2903/j.efsa.2020.5967

    Article  Google Scholar 

  53. Momtaz H, Farzan R, Rahimi E, Safarpoor Dehkordi F, Souod N (2012) Molecular characterization of Shiga toxin-producing Escherichia coli isolated from ruminant and donkey raw milk samples and traditional dairy products in Iran. Sci World J 2012(2):20. https://doi.org/10.1100/2012/231342

    Article  CAS  Google Scholar 

  54. Brusa V, Piñeyro PE, Galli L, Linares LH, Ortega EE, Padola NL, Leotta GA (2016) Isolation of Shiga toxin-producing Escherichia coli from ground beef using multiple combinations of enrichment broths and selective agars. Foodborne Pathog Dis 13(3):163–170

    CAS  PubMed  Google Scholar 

  55. Gill A, Huszczynski G, Gauthier M, Blais B (2014) Evaluation of eight agar media for the isolation of shiga toxin—producing Escherichia coli. J Microbiol Methods 96:6–11

    PubMed  Google Scholar 

  56. Lupindu AM (2018) Epidemiology of Shiga toxin-producing Escherichia coli O157: H7 in Africa in review. South Afr J Infect Dis 33(1):24–30

    Google Scholar 

  57. Shridhar PB, Noll LW, Shi X, An B, Cernicchiaro N, Renter DG, Bai J (2016) Multiplex quantitative PCR assays for the detection and quantification of the six major non-O157 Escherichia coli serogroups in cattle feces. J Food Prot 79(1):66–74

    CAS  PubMed  Google Scholar 

  58. Verhaegen B, De Reu K, De Zutter L, Verstraete K, Heyndrickx M, Van Coillie E (2016) Comparison of droplet digital PCR and qPCR for the quantification of Shiga toxin-producing Escherichia coli in bovine feces. Toxins 8(5):157

    PubMed Central  Google Scholar 

  59. Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G (2019) A quantitative real time PCR assay to detect and enumerate Escherichia coli O157 and O26 serogroups in sheep recto-anal swabs. J Microbiol Methods 165:105703

    CAS  PubMed  Google Scholar 

  60. Sethulekshmi C, Latha C, Anu CJ (2018) Occurrence and quantification of Shiga toxin-producing Escherichia coli from food matrices. Vet World 11(2):104

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G (2020) Investigation of the causes of shigatoxigenic Escherichia coli PCR positive and culture negative samples. Microorganisms 8(4):587

    CAS  PubMed Central  Google Scholar 

  62. Perera A, Clarke CM, Dykes GA, Fegan N (2015) Characterization of Shiga toxigenic Escherichia coli O157 and non-O157 isolates from Ruminant Feces in Malaysia. Biomed Res Int 2015:382403

    PubMed  PubMed Central  Google Scholar 

  63. Murphy BP, McCabe E, Murphy M, Buckley JF, Crowley D, Fanning S, Duffy G (2016) Longitudinal study of two Irish dairy herds: low numbers of Shiga toxin-producing Escherichia coli O157 and O26 Super-Shedders Identified. Front Microbiol 7:1850

    PubMed  PubMed Central  Google Scholar 

  64. Thomas KM, McCann MS, Collery MM, Logan A, Whyte P, McDowell DA, Duffy G (2012) Tracking verocytotoxigenic Escherichia coli O157, O26, O111, O103 and O145 in Irish cattle. Int J Food Microbiol 153(3):288–296

    CAS  PubMed  Google Scholar 

  65. Bibbal D, Loukiadis E, Kérourédan M, Ferré F, Dilasser F, de Garam CP, Brugère H (2015) Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157: H7, O26: H11, O103: H2, O111: H8, and O145: H28 among slaughtered adult cattle in France. Appl Environ Microbiol 81(4):1397

    PubMed  PubMed Central  Google Scholar 

  66. McCabe E, Burgess CM, Lawal D, Whyte P, Duffy G (2019) An investigation of shedding and super-shedding of Shiga toxigenic Escherichia coli O157 and E. coli O26 in cattle presented for slaughter in the Republic of Ireland. Zoonoses Public Health 66(1):83–91

    CAS  PubMed  Google Scholar 

  67. Fox J, Corrigan M, Drouillard J, Shi X, Oberst R, Nagaraja T (2007) Effects of concentrate level of diet and pen configuration on the prevalence of Escherichia coli O157 in finishing goats. Small Rumin Res 72:45–50

    Google Scholar 

  68. Mersha G, Asrat D, Zewde B, Kyule M (2010) The occurrence of Escherichia coli O157: H7 in feces, skin and carcasses from sheep and goats in Ethiopia. Lett Appl Microbiol 50:71–76

    CAS  PubMed  Google Scholar 

  69. Menrath A, Wieler LH, Heidemanns K, Semmler T, Fruth A, Kemper N (2010) Shiga toxin producing Escherichia coli: identification of non-O157: H7-super-shedding cows and related risk factors. Gut Pathog 2(1):1–9

    Google Scholar 

  70. Mir RA, Weppelmann TA, Elzo M, Ahn S, Driver JD, Jeong KC (2016) Colonization of beef cattle by Shiga toxin-producing Escherichia coli during the first year of life: a cohort study. PLoS ONE 11(2):e0148518

    PubMed  PubMed Central  Google Scholar 

  71. Kilonzo C, Atwill ER, Mandrell R, Garrick M, Villanueva V, Hoar BR (2011) Prevalence and molecular characterization of Escherichia coli O157: H7 by multiple-locus variable-number tandem repeat analysis and pulsed-field gel electrophoresis in three sheep farming operations in California. J Food Prot 74(9):1413–1421

    PubMed  Google Scholar 

  72. Moriarty EM, McEwan N, Mackenzie M, Karki N, Sinton LW, Wood DR (2011) Incidence and prevalence of microbial indicators and pathogens in ovine faeces in New Zealand. N Z J Agric Res 54(2):71–81

    Google Scholar 

  73. Gunn GJ, McKendrick IJ, Ternent HE, Thomson-Carter F, Foster G, Synge BA (2007) An investigation of factors associated with the prevalence of verocytotoxin producing Escherichia coli O157 shedding in Scottish beef cattle. Vet J 174(3):554–564

    CAS  PubMed  Google Scholar 

  74. Dewell GA, Ransom JR, Dewell RD, McCurdy K, Gardner IA, Hill E, Salman MD (2005) Prevalence of and risk factors for Escherichia coli O157 in market-ready beef cattle from 12 US feedlots. Foodborne Pathog Dis 2(1):70–76

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Matiullah (Department of Microbiology, Hazara University Mansehra, Pakistan) for his generous suggestion and help in revision of the final draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shehzad Ahmed or Abrar Hussain Mian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, A., Ullah, F., Irshad, H. et al. Molecular detection of Shiga toxin-producing Escherichia coli (STEC) O157 in sheep, goats, cows and buffaloes. Mol Biol Rep 48, 6113–6121 (2021). https://doi.org/10.1007/s11033-021-06631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06631-3

Keywords

Navigation