Skip to main content
Log in

Effect of valproic acid on miRNAs affecting histone deacetylase in a model of anaplastic thyroid cancer

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Thyroid cancer is the most common malignant tumor of the endocrine system seen in the thyroid gland. More than 90% of thyroid cancers comprise papillary thyroid cancer (PTC) and follicular thyroid cancer (FTC). Although anaplastic thyroid carcinoma (ATC) accounts for less than 2% of thyroid cancer. But patients’ lifespan after diagnosis is about 6 months. Surgical interventions, radioactive iodine use, and chemotherapy are not sufficient in the treatment of ATC, so alternative therapies are needed.

Methods and results

The WST-1 assay test was performed to evaluate the anti-proliferative effects of Valproic acid (VPA). Also, the effect of VPA on miRNAs affecting histone deacetylase was determined by Quantitative RT-PCR. In the SW1736 cell line, IC50 dose for VPA was found 1.6 mg/ml. In our study, the level of oncogenic genes expression in cells treated with VPA, including miR-184, miR-222-5p, miR-124-3p, and miR-328-3p, decreased. Also, the expression of tumor inhibitory genes including miR-323-5p, miR-182-5p, miR-138-5p, miR-217, miR-15a-5p, miR-29b-3p, miR-324-5p and miR-101-5p increased significantly.

Conclusions

VPA can ad-just countless gene expression patterns, including microRNAs (miRNAs), by targeting histone deacetylase (HDAC). However, further studies are required for more accurate results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

All data obtained in the study can be accessed if desired.

References

  1. Viola D et al (2016) Treatment of advanced thyroid cancer with targeted therapies: ten years of experience. Endocr Relat Cancer 23(4):R185–R205. https://doi.org/10.1530/ERC-15-0555

    Article  CAS  PubMed  Google Scholar 

  2. Tumino D et al (2017) Updates on the management of advanced, metastatic, and radioiodine refractory differentiated thyroid cancer. Front Endocrinol 8:312. https://doi.org/10.3389/fendo.2017.00312

    Article  Google Scholar 

  3. Ozdemir Kutbay N et al (2020) Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol 34(10):e22547. https://doi.org/10.1002/jbt.22547

    Article  CAS  PubMed  Google Scholar 

  4. Bi JW et al (2019) MiR-599 serves a suppressive role in anaplastic thyroid cancer by activating the T-cell intracellular antigen. Exp Ther Med 18(4):2413–2420. https://doi.org/10.3892/etm.2019.7864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pirrò S et al (2021) The microRNA analysis portal is a next-generation tool for exploring and analyzing miRNA-focused data in the literature. Sci Rep 11(1):1–12. https://doi.org/10.1038/s41598-021-88617-6

    Article  CAS  Google Scholar 

  6. Oliveto S et al (2017) Role of microRNAs in translation regulation and cancer. World J Biol Chem 8(1):45. https://doi.org/10.4331/wjbc.v8.i1.45

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wójcicka A et al (2016) Mechanisms in endocrinology: microRNA in diagnostics and therapy of thyroid cancer. Eur J Endocrinol 174(3):R89–R98. https://doi.org/10.1530/EJE-15-0647

    Article  CAS  PubMed  Google Scholar 

  8. Pileczki V et al (2016) MicroRNAs as regulators of apoptosis mechanisms in cancer. Clujul Med 89(1):50. https://doi.org/10.15386/cjmed-512

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alotaibi KD et al (2018) Phosphorus speciation in a prairie soil amended with MBM and DDG ash: sequential chemical extraction and synchrotron-based XANES spectroscopy investigations. Sci Rep 8(1):1–9. https://doi.org/10.1038/s41598-018-21935-4

    Article  CAS  Google Scholar 

  10. De Paolis V et al (2021) Epitranscriptomics: a new layer of microRNA regulation in cancer. Cancers 13(13):3372. https://doi.org/10.3390/cancers13133372

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ardekani A, Naeini MM (2010) The role of microRNAs in human diseases. Avicenna J Med Biotechnol 2(4):161

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuang X et al (2016) Deregulated microRNA expression and its pathogenetic implications for myelodysplastic syndromes. J Hematol 21(10):593–602. https://doi.org/10.1080/10245332.2016.1193962

    Article  CAS  Google Scholar 

  13. Zhu X, Cheng SY (2017) Epigenetic modifications: novel therapeutic approach for thyroid cancer. Endocrinol Metab 32(3):326

    Article  CAS  Google Scholar 

  14. Rahhal R, Seto E (2019) Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 47(10):4911–4926. https://doi.org/10.1093/nar/gkz292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abend A, Kehat I (2015) Histone deacetylases as therapeutic targets—from cancer to cardiac disease. Pharmacol Ther 147:55–62. https://doi.org/10.1016/j.pharmthera.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  16. Di Fazio P et al (2012) Downregulation of HMGA2 by the pan-deacetylase inhibitor panobinostat is dependent on hsa-let-7b expression in liver cancer cell lines. Exp Cell Res 318(15):1832–1843. https://doi.org/10.1016/j.yexcr.2012.04.018

    Article  CAS  PubMed  Google Scholar 

  17. Jenke R et al (2021) Anticancer therapy with HDAC inhibitors: mechanism-based combination strategies and future perspectives. Cancers 13(4):634. https://doi.org/10.3390/cancers13040634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chiu CT et al (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65(1):105–142. https://doi.org/10.1124/pr.111.005512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sixto-López Y et al (2020) Exploring the inhibitory activity of valproic acid against the HDAC family using an MMGBSA approach. J Comput Aided Mol Des. https://doi.org/10.1007/s10822-020-00304-2

    Article  PubMed  Google Scholar 

  20. Sanaei M et al (2018) Effect of valproic acid in comparison with vorinostat on cell growth inhibition and apoptosis induction in the human colon cancer SW48 cells in vitro. Exp Oncol. https://doi.org/10.31768/2312-8852.2018.40(2):95-100

    Article  PubMed  Google Scholar 

  21. Ma XJ et al (2017) The role and possible molecular mechanism of valproic acid in the growth of MCF-7 breast cancer cells. Croat Med J 58(5):349–357. https://doi.org/10.3325/cmj.2017.58.349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zafon C et al (2019) DNA methylation in thyroid cancer. Endocr Relat Cancer 26(7):R415–R439

    Article  CAS  PubMed  Google Scholar 

  23. Wang F et al (2017) Reciprocal regulation between microRNAs and epigenetic machinery in colorectal cancer. Oncol Lett 13(3):1048–1057. https://doi.org/10.3892/ol.2017.5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Calin GA, Croce CM (2006) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15):7390–7394. https://doi.org/10.1158/0008-5472

    Article  PubMed  Google Scholar 

  25. Zhu L et al (2019) miR-217 inhibits the migration and invasion of HeLa cells through modulating MAPK1. Int J Mol Med 44(5):1824–1832. https://doi.org/10.3892/ijmm.2019.4328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang J et al (2017) MicroRNA-217 functions as a prognosis predictor and inhibits pancreatic cancer cell proliferation and invasion via targeting E2F3. Eur Rev Med Pharmacol Sci 21(18):4050–4057

    CAS  PubMed  Google Scholar 

  27. Liu YP et al (2017) MicroRNA-217 suppressed epithelial-to-mesenchymal transition in gastric cancer metastasis through targeting PTPN14. Eur Rev Med Pharmacol Sci 21(8):1759–1767

    PubMed  Google Scholar 

  28. Wang LP et al (2018) HOTAIR contributes to the growth of liver cancer via targeting miR-217. Oncol Lett 15(5):7963–7972. https://doi.org/10.3892/ol.2018.8341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saiselet M et al (2016) miRNA expression and function in thyroid carcinomas: a comparative and critical analysis and a model for other cancers. Oncotarget 7(32):52475. https://doi.org/10.18632/oncotarget.9655

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sullivan TB et al (2018) Spatiotemporal microRNA profile in peripheral nerve regeneration: miR-138 targets vimentin and inhibits Schwann cell migration and proliferation. Neural Regen Res 13(7):1253. https://doi.org/10.4103/1673-5374.235073

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jin J et al (2019) miRNA-15a regulates the proliferation and apoptosis of papillary thyroid carcinoma via regulating AKT pathway. Onco Targets Ther 12:6217. https://doi.org/10.2147/OTT.S213210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Long J et al (2016) MicroRNA-15a-5p suppresses cancer proliferation and division in human hepatocellular carcinoma by targeting BDNF. Tumour Biol 37(5):5821–5828. https://doi.org/10.1007/s13277-015-4427-6

    Article  CAS  PubMed  Google Scholar 

  33. Soriano A et al (2019) Functional high-throughput screening reveals miR-323a-5p and miR-342-5p as new tumor-suppressive microRNA for neuroblastoma. Cell Mol Life Sci 76(11):2231–2243. https://doi.org/10.1007/s00018-019-03041-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Men Y et al (2017) MiR-323a-3p inhibits cell proliferation, migration, and invasion in esophageal squamous cell carcinoma via suppression FMR1. Int J Radiat Oncol Biol Phys 99(2):E610. https://doi.org/10.1016/j.ijrobp.2017.06.2069

    Article  Google Scholar 

  35. Wong TS et al (2008) Mature miR-184 as potential oncogenic microRNA of squamous cell carcinoma of tongue. Clin Cancer Res 14(9):2588–2592. https://doi.org/10.1158/1078-0432

    Article  CAS  PubMed  Google Scholar 

  36. Yuan Q et al (2014) Upregulation of miR-184 enhances the malignant biological behavior of human glioma cell line A172 by targeting FIH-1. Cell Physiol Biochem 34(4):1125–1136. https://doi.org/10.1159/000366326

    Article  CAS  PubMed  Google Scholar 

  37. Kometani T et al (2020) Increased expression of NPM1 suppresses p27Kip1 function in cancer cells. Cancers 12(10):2886. https://doi.org/10.3390/cancers12102886

    Article  CAS  PubMed Central  Google Scholar 

  38. Mortoglou M et al (2021) MicroRNA-regulated signaling pathways: potential biomarkers for pancreatic ductal adenocarcinoma. Stresses 1(1):30–47. https://doi.org/10.3390/stresses1010004

    Article  Google Scholar 

  39. Han SH et al (2017) MicroRNA-222 expression as a predictive marker for tumor progression in hormone receptor-positive breast cancer. J Breast Cancer 20(1):35

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gao H et al (2017) MicroRNA-222 influences migration and invasion through MIA3 in colorectal cancer. Cancer Cell Int 17(1):1–10. https://doi.org/10.1186/s12935-017-0447-1

    Article  CAS  Google Scholar 

  41. Zhou L et al (2016) Downregulation of miR-221/222 by a microRNA sponge promotes apoptosis in oral squamous cell carcinoma cells through upregulation of PTEN. Oncol Lett 12(6):4419–4426. https://doi.org/10.3892/ol.2016.5250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Srivastava AK et al (2019) Inhibition of miR-328–3p impairs cancer stem cell function and prevents metastasis in ovarian cancer. Cancer Res 79(9):2314–2326. https://doi.org/10.1158/0008-5472

    Article  PubMed  PubMed Central  Google Scholar 

  43. Catalano MG et al (2009) Effects of the histone deacetylase inhibitor valproic acid on the sensitivity of anaplastic thyroid cancer cell lines to imatinib. Oncol Rep 21(2):515–521. https://doi.org/10.3892/or_00000252

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

NG: Writing—original draft. NB, FS, and NO: Methodology. CK: Methodology, data curation. BB: Data curation, methodology. CA: Conceptualization, writing—review & editing. BS: Conceptualization, writing—original draft.

Corresponding author

Correspondence to Cigir Biray Avci.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to publication

All authors agree to publish the data of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunel, N.S., Birden, N., Kurt, C.C. et al. Effect of valproic acid on miRNAs affecting histone deacetylase in a model of anaplastic thyroid cancer. Mol Biol Rep 48, 6085–6091 (2021). https://doi.org/10.1007/s11033-021-06616-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06616-2

Keywords

Navigation