Skip to main content
Log in

Butylcycloheptylprodigiosin and undecylprodigiosin are potential photosensitizer candidates for photodynamic cancer therapy

  • Original Article
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Background

Prodiginines are bacterial red polypyrrole pigments and multifaceted secondary metabolites. These agents have anti-proliferative, immunosuppressive, antimicrobial, and anticancer effects. Recent analysis revealed that prodigiosin hypersensitizes Serratia marcescens to gamma radiation. In the present study, we report the cytotoxicity and genotoxicity properties of undecylprodigiosin and butylcycloheptylprodigiosin in the presence and absence of radiation through the MTT and alkaline comet experiments.

Methods and results

Findings demonstrated that undecylprodigiosin was at least a fivefold more cytotoxic at low radiation doses (1 and 3 Gy) on both MCF7 and HDF lines rather than in the absence or high radiation doses (5 Gy) (P value < 0.05). Although butylcycloheptylprodigiosin toxicity on MCF7 and HDF was dose-dependent, it was not influenced by any radiation doses (P value > 0.05). Comet findings confirmed that these compounds’ genotoxicity is only dose-dependent. Radiation had no significant effects on DNA damage on any of the cells (P value > 0.05).

Conclusions

In general, it can be concluded that the prodiginines are cytotoxic agents that act as a double-edged sword, radiosensitizers and radio-protective, respectively at low and high radiation doses in cancer treatment process. As the results they could be used in antitumor therapies very soon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available on request from the corresponding author.

References

  1. Kwiatkowski S, Knap B, Przystupski D et al (2018) Photodynamic therapy—mechanisms, photosensitizers and combinations. Biomed Pharmacother 106:1098–1107. https://doi.org/10.1016/j.biopha.2018.07.049

    Article  CAS  PubMed  Google Scholar 

  2. Abrahamse H, Hamblin MR (2017) New photossensitizersfot photodynamic therapy. Biochem J 473:347–364. https://doi.org/10.1042/BJ20150942.New

    Article  Google Scholar 

  3. Khanafari A, Assadi MM, Fakhr FA (2006) Review of prodigiosin, pigmentation in Serratia marcescens. Online J Biol Sci 6:1–13. https://doi.org/10.3844/ojbsci.2006.1.13

    Article  Google Scholar 

  4. Darshan N, Manonmani HK (2015) Prodigiosin and its potential applications. J Food Sci Technol 52:5393–5407. https://doi.org/10.1007/s13197-015-1740-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guryanov ID, Karamova NS, Yusupova DV et al (2013) Bacterial pigment prodigiosin and its genotoxic effect. Russ J Bioorg Chem 39:106–111. https://doi.org/10.1134/S1068162012060040

    Article  CAS  Google Scholar 

  6. Mirzaei SA, Safari Kavishahi M, Keshavarz Z, Elahian F (2018) Unlike butylcycloheptylprodigiosin, isolated undecylprodigiosin from Streptomyces parvulus is not a MDR1 and BCRP substrate in multidrug-resistant cancers. DNA Cell Biol 37:535–542. https://doi.org/10.1089/dna.2018.4161

    Article  CAS  PubMed  Google Scholar 

  7. Lins JCL, De Melo MEB, Do Nascimento SC, Adam ML (2015) Differential genomic damage in different tumor lines induced by prodigiosin. Anticancer Res 35:3325–3332

    CAS  PubMed  Google Scholar 

  8. Liu P, Wang Y, Qi X et al (2013) Undecylprodigiosin induced apoptosis in P388 cancer cells is associated with its binding to ribosome. PLoS ONE. https://doi.org/10.1371/journal.pone.0065381

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bartlett WT, O’Donovan GA, Richard D (2016) Effect of gamma radiation on Serratia marcescens. Studies on the radiosensitivity of prodigiosin production, vol 43. Radiation Research Society, Lawrence, pp 196–203

    Google Scholar 

  10. Petrović S, Vasić V, Mitrović T et al (2017) The impact of concentration and administration time on the radiomodulating properties of undecylprodigiosin in vitro. Arh Hig Rada Toksikol 68:1–8. https://doi.org/10.1515/aiht-2017-68-2897

    Article  CAS  PubMed  Google Scholar 

  11. Elahian F, Moghimi B, Dinmohammadi F et al (2013) The anticancer agent prodigiosin is not a multidrug resistance protein substrate. DNA Cell Biol 32:90–97. https://doi.org/10.1089/dna.2012.1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nowsheen S, Xia F, Yang ES (2012) Assaying DNA damage in hippocampal neurons using the comet assay. J Vis Exp. https://doi.org/10.3791/50049

    Article  PubMed  PubMed Central  Google Scholar 

  13. Afshari V, Elahian F, Ayari Y et al (2016) Diversity and ecotypic variation in the antioxidant and antigenotoxic effects of Thymus kotschyanus Boiss & Hohen. Flavour Fragr J 31:429–437. https://doi.org/10.1002/ffj.3333

    Article  CAS  Google Scholar 

  14. Baskar R, Lee KA, Yeo R, Yeoh KW (2012) Cancer and radiation therapy: current advances and future directions. Int J Med Sci 9:193–199. https://doi.org/10.7150/ijms.3635

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hassan M, Watari H, Abualmaaty A et al (2014) Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. https://doi.org/10.1155/2014/150845

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hassan TH, Authaman SH, Khalaf KJ (2020) Effect of purified prodigiosin from Serratia marcescens on the inhibition of breast cancer (MCF-7 and CAL-51 cell line). Indian J Forensic Med Toxicol 14:1234–1239. https://doi.org/10.37506/ijfmt.v14i3.10564

    Article  Google Scholar 

  17. Anwar MM, Shalaby M, Embaby AM et al (2020) Prodigiosin/PU-H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): preclinical insights. Sci Rep 10:1–15. https://doi.org/10.1038/s41598-020-71157-w

    Article  CAS  Google Scholar 

  18. Li D, Liu J, Wang X et al (2018) Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. Lawsoniana in human choriocarcinoma and prostate cancer cell lines. Int J Mol Sci. https://doi.org/10.3390/ijms19113465

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hassankhani R, Sam MR, Esmaeilou M, Ahangar P (2015) Prodigiosin isolated from cell wall of Serratia marcescens alters expression of apoptosis-related genes and increases apoptosis in colorectal cancer cells. Med Oncol 32:1–8. https://doi.org/10.1007/s12032-014-0366-0

    Article  CAS  Google Scholar 

  20. Rezakhani N, Goliaei B, Parivar K, Nikoofar AR (2020) Effects of X-irradiation and sinensetin on apoptosis induction in MDA-MB-231 human breast cancer cells. Int J Radiat Res 18:75–82. https://doi.org/10.18869/acadpub.ijrr.18.1.75

    Article  Google Scholar 

  21. Cheng SY, Chen NF, Kuo HM et al (2018) Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 23:314–328. https://doi.org/10.1007/s10495-018-1456-9

    Article  CAS  PubMed  Google Scholar 

  22. Díaz-Ruiz C, Montaner B, Pérez-Tomás R (2001) Prodigiosin induces cell death and morphological changes indicative of apoptosis in gastric cancer cell line HGT-1. Histol Histopathol 16:415–421. https://doi.org/10.14670/HH-16.415

    Article  PubMed  Google Scholar 

  23. Chiu W-J, Lin S-R, Chen Y-H et al (2018) Prodigiosin-emerged PI3K/Beclin-1-independent pathway elicits autophagic cell death in doxorubicin-sensitive and -resistant lung cancer. J Clin Med 7:321. https://doi.org/10.3390/jcm7100321

    Article  CAS  PubMed Central  Google Scholar 

  24. Liu Y, Zhou H, Ma X et al (2018) Prodigiosin inhibits proliferation, migration, and invasion of nasopharyngeal cancer cells. Cell Physiol Biochem 48:1556–1562. https://doi.org/10.1159/000492278

    Article  CAS  PubMed  Google Scholar 

  25. Yenkejeh RA, Sam MR, Esmaeillou M (2017) Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells. Hum Exp Toxicol 36:402–411. https://doi.org/10.1177/0960327116651122

    Article  CAS  PubMed  Google Scholar 

  26. Montaner B, Navarro S, Piqué M et al (2000) Prodigiosin from the supernatant of Serratia marcescens induces apoptosis in haematopoietic cancer cell lines. Br J Pharmacol 131:585–593. https://doi.org/10.1038/sj.bjp.0703614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Francisco R, Pérez-Tomás R, Gimènez-Bonafé P et al (2007) Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines. Eur J Pharmacol 572:111–119. https://doi.org/10.1016/j.ejphar.2007.06.054

    Article  CAS  PubMed  Google Scholar 

  28. Subash P (2016) Assessment of oxidative DNA damage by alkaline comet assay in human essential hypertension. Indian J Clin Biochem 31:185–193. https://doi.org/10.1007/s12291-015-0521-1

    Article  CAS  PubMed  Google Scholar 

  29. Chen J, Li Y, Liu F et al (2019) Prodigiosin promotes Nrf2 activation to inhibit oxidative stress induced by microcystin-LR in HepG2 cells. Toxins (Basel). https://doi.org/10.3390/TOXINS11070403

    Article  PubMed Central  Google Scholar 

  30. Choi SY, Lim S, Yoon K et al (2021) Biotechnological activities and applications of bacterial pigments violacein and prodigiosin. J Biol Eng 151(15):1–16. https://doi.org/10.1186/S13036-021-00262-9

    Article  Google Scholar 

  31. Lunic D, Bergamaschi E, Teskey CJ (2021) Using light to modify the selectivity of transition metal catalysed transformations. Angew Chemie Int Ed 60:2–14. https://doi.org/10.1002/ANIE.202105043

    Article  Google Scholar 

  32. Lapenda JCL, Alves VP, Adam ML et al (2020) Cytotoxic effect of prodigiosin, natural red pigment, isolated from Serratia marcescens UFPEDA 398. Indian J Microbiol. https://doi.org/10.1007/s12088-020-00859-6

    Article  PubMed  PubMed Central  Google Scholar 

  33. Montaner B, Castillo-Ávila W, Martinell M et al (2005) DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin. Toxicol Sci 85:870–879. https://doi.org/10.1093/toxsci/kfi149

    Article  CAS  PubMed  Google Scholar 

  34. Guryanov I, Naumenko E, Akhatova F et al (2020) Selective cytotoxic activity of prodigiosin@halloysite nanoformulation. Front Bioeng Biotechnol 8:1–13. https://doi.org/10.3389/fbioe.2020.00424

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Shahrekord University of Medical Sciences for financial support (Grant No. IR.SKUMS.REC.1395.306). The founder has no role in study design, data collection, analysis, decision to publish, or manuscript preparation. Also, the authors acknowledge and appreciate the anonymous reviewers for their thoughtful comments, which have helped improve the article’s quality.

Author information

Authors and Affiliations

Authors

Contributions

FE coordinated the study, designed the experiments, and revised the final manuscript. SAM and DF participated in the data analyses and intellectual discussions of the data. ZA and SAH performed the experiments, analyzed the data, and participated in the manuscript writing as parts of their theses. All authors reviewed and accepted the manuscript.

Corresponding author

Correspondence to Fatemeh Elahian.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 657 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshadi, Z., Hosseini, S.A., Fatehi, D. et al. Butylcycloheptylprodigiosin and undecylprodigiosin are potential photosensitizer candidates for photodynamic cancer therapy. Mol Biol Rep 48, 5965–5975 (2021). https://doi.org/10.1007/s11033-021-06598-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-021-06598-1

Keywords

Navigation